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Abstract

Future wireless sensor networks (WSNs) are projected
to run multiple applications in the same network infrastruc-
ture. While such multi-application WSNs (MA-WSNs) are
economically more efficient and adapt better to the chang-
ing environments than traditional single-application WSNs,
they usually require frequent code redistribution on wireless
sensors, making it critical to design energy efficient post-
deployment code dissemination protocols in MA-WSNs.

Different applications in MA-WSNs often share some
common code segments. Therefore when there is a need
to disseminate a new application from the sink node, it is
possible to disseminate its shared code segments from peer
sensors instead of disseminating everything from the sink
node. While dissemination protocols have been proposed to
handle code of each single type, it is challenging to achieve
energy efficiency when the code contains both types and
needs simultaneous dissemination. In this paper we utilize
an adaptive buffer management approach to achieve effi-
cient code dissemination in MA-WSNs. Our experimental
results show that adaptive buffer management can reduce
the completion time and the message overhead up to 10%
and 20% respectively.

1 Introduction

Wireless sensor networks (WSNs) have emerged as a
promising computing platform for many applications such
as patient monitoring in hospitals, and wildfire detection in
forests [3]. While one sensor is usually small and cheap,
as the network size scales, a large WSN may contain thou-
sands of sensors making it uneconomic to run just one ap-
plication, referred as single-application WSN or SA-WSN.
Instead multi-application WSNs (MA-WSNs) that support
several applications within one WSN infrastructure are pro-

jected to become more popular [12]. As an example, a WSN
deployed in a national park may be exploited for monitor-
ing both wildfire and animals’ migration habits. While a
single sensor may still run one application at a time, dif-
ferent sensors run different applications and serve different
monitoring needs.

MA-WSNs have many advantages over SA-WSNs. As
an example, a MA-WSN adapts better to the changing en-
vironments as they can dynamically switch the applications
according to the need. For the above WSN, more nodes can
be configured for wildfire detection in the summer when
the weather is dry and the chance to catch a wildfire is high;
and more nodes can be configured for animals’ habit mon-
itoring either for a special short-time project or in the late
fall when animals start mitigation for the winter season. As
a comparison, switching applications in SA-WSNs needs to
completely reprogram all nodes while reconfiguring appli-
cations in MA-WSNs only gets a subset of nodes involved.

However, post-deployment code dissemination has to
be done through wireless communication that consumes
significant energy. With more frequent code reconfigura-
tion, it becomes critical to design energy efficient dissem-
ination protocols for MA-WSNs. Our study showed that
while wireless sensors cannot store all applications due to
the tight storage constraints, different applications in MA-
WSNs usually share some code segments. As a result, when
a sensor node needs to switch to a different application, it
may fetch the common code from peer sensors in the net-
work and the rest from the sink node. While approaches
have recently been proposed for disseminating each type in-
dividually, it is still challenging to disseminate code of both
types of code segments. Simple solutions such as sequen-
tially disseminating these two types of code segments, or
blindly treating them as two sub applications, are not en-
ergy efficient.

In this paper we propose dissemination schemes that si-
multaneously disseminate the code containing both types of
code segments into a subset of sensors in a MA-WSN. In



particular we analyze the code propagation behaviors when
disseminating code from the sink and from peer sensors,
and adaptively manage the available memory on each sensor
to achieve maximal energy efficiency during dissemination.
We has implemented our proposed schemes in TinyOS [7]
using TOSSIM [5]. Our results show that adaptive buffer
management can reduce the completion time and the mes-
sage overhead up to 10% and 20% respectively.

For the rest of the paper, section 2 discusses our simul-
taneous code dissemination schemes with adaptive buffer
management. The experimental results are presented and
analyzed in section 3. We will discuss the related work in
section 4 and conclude the paper in section 5.

2 Adaptive Buffer Management

In this section, we elaborate the code dissemination
problem in MA-WSNs and discuss different buffer manage-
ment choices.

2.1 Problem Statement

The MA-WSN that we consider in this paper consists
of a large number of wireless sensors and a sink node.
The wireless sensors are battery-powered and have limited
memory and computation power e.g. a MICAz node [11]
has 4KB EEPROM data memory and 512KB flash mem-
ory. The sink node is directly connected to a PC and has
no power and computation restrictions. For discussion pur-
poses, we assume sensor nodes are pre-programmed with
either application B or C' and then get deployed into the
field. Nodes with B and C' are uniformly distributed in the
network.
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Figure 1. A multi-application WSN (4 is the
application to be disseminated while B and
C are current applications).

The code dissemination problem in MA-WSN arises
when there is a need to distribute a new application A to N,
nodes across the network. As it is infeasible to reclaim sen-
sors after the deployment, post-deployment code dissemi-

nation has to be done through hop-by-hop wireless commu-
nication.

| State | Current Draw |
Radio Send state (TX, 0 dBm) 17.4 mA
Radio Receive state 19.7 mA
Radio Idle state 20p1A

| CPU Active mode | 8 mA |

Figure 2. The currents at different states on a
MICAz sensor.

Fig. 2 shows the currents that a MICAz sensor draws at
different states [11]. Since wireless communication is more
energy expensive, it is important to reduce the number of
packets exchanged during the dissemination. In addition,
the processor draws current in active mode. It is beneficial
to finish the code dissemination early such that they can ei-
ther switch to the sleep mode or start to perform the sensing
task. In summary, we evaluate the effectiveness of a code
dissemination protocol in terms of a tuple (7, M) where
T and M represent the time to finish reprogramming all re-
quired sensors and the number of packets transmitted during
dissemination.

Our goal is to design an effective dissemination protocol
such that both dissemination time and message overhead
can be reduced.

2.2 Simultaneous Code Dissemination

As shown in [12], different applications in a MA-WSN
usually share some code segments. For example, two appli-
cations may be designed for sensing and processing two dif-
ferent events — wildfire and animal mitigation. While the
data processing components are different, the routing code
could be similar. If one application has already been in-
stalled on some sensors, then at the time when a remote sen-
sor wants to load the other application, it is energy efficient
to fetch the common code from these peer sensors instead of
the sink. Fetching code from peer sensors exhibits two ad-
vantages: (i) remote requesting sensors (i.e. the sensors that
need to switch their running application to the new one) can
start early and fetch the code in parallel without waiting for
the progressive code dissemination from the sink. (ii) since
only a subset of sensors get involved in dissemination, the
message overhead can be greatly reduced. Without losing
generality, we assume A and B share S, common pack-
ets while A and C' do not share any packet. When a sensor
needs to switch to run application A, it fetches shared code
from nodes that have B and the rest of the code from the
sink.
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Figure 3. Code dissemination in MA-WSN.

The basic dissemination unit in MA-WSN is a packet
that contains 23 bytes payload, similar as that in the default
multi-hop dissemination protocol Deluge [1] in TinyOS. To
enable code dissemination of two types of packets, the code
segments needs to be reorganized, as shown in Fig. 3. Given
the above application A to be disseminated, we first divide
it into a sequence of code packets, and mark all packets
that are shared with B. We compare at the packet level in
this paper while techniques have been proposed to compare
two applications and generate difference at different levels
[10, 6]. After marking the code, we group packets based
on if they are marked or not, and add two bit vectors (one
vector per application and one bit per packet) to guide the
code reorganization. The bit vector for application A (or
B) indicates the locations of marked packets in application
A(or B). For example, a bit vector “011100” for A means
that the 3rd, 4th, S5th packets of A are shared packets. In
other words, the three packets received from the sink later
on actually represent the 1st, 2nd an 6th packets of A, while
the three packets received from the peer sensor represent the
3rd, 4th, and 5th packets of A.

The simultaneous code dissemination in MA-WSNs is
divided into two steps.

o In the first step, the sink node broadcasts a dissemina-
tion command together with the two bit vectors, and
epidemically propagates the information to all sensors
in the network. This phase is fast as the data size is
small comparing to the code to be disseminated, e.g. if
the size of application A is 10KB or 480 packets, and
assuming half of these packets are shared with B, then
we need two 60-byte vectors, or 5 packets.

e In the second step, the marked packets are transmit-
ted from peer nodes that contain B while the rest are
disseminated epidemically from the sink. We adopt
Deluge [1] and an augmented version of Melete [12]

to handle these two types respectively. We summa-
rize our modification as follows, and discuss the buffer
management on each sensor in the next section.

Protocol augmentation. Melete adopts a controlled
broadcasting design to fetch code segments from peer sen-
sors. A requesting node broadcasts its REQ messages to all
sensors within m hops such that all sensors containing the
requested packets in this range will respond. The broadcast
range can gradually extend larger if no packet was received
before timeout. In practice, if there are multiple responders,
message collision is a more serious problem. While Melete
introduces a special response message type to prevent too
many responders, the collision is still serious around the re-
questing nodes when there are multiple requesting nodes in
the network.

In our augmented implementation, instead of broadcast-
ing, we adopt a multi-path routing design with the help of
a small table that summarizes the overheard information
about each application. More specifically, the table stores
(i, h) for each application X where i is the sensor ID of the
closest sensor that has X (besides the node itself), and h is
the number of hops to <.

This table is considered a hint and thus does not need to
be accurate. To maintain the table, we enhance the heart-
beat ADV message in Deluge which was originally designed
to be sent periodically to keep the network state up-to-date.
Each sensor attaches its knowledge about available applica-
tions to the ADV message which is used to update the table
on the receiver side. Note that the table is maintained when
the network is in stable state such that it has minimal inter-
ference during the dissemination. From this table a request-
ing node knows how far away (in terms of hop count) it
can expect to find a node containing application B. There-
fore the requests can be sent through one or several paths,
instead of broadcasting.

If the table entry is inaccurate and the requested packets
cannot be fetched before timeout, then the requesting node
rolls back to broadcasting similar as that in Melete.

Simultaneous requesting both types of packets. For the
two types of packets in MA-WSNs, a naive approach is to
treat them as two sub-applications and fetch sequentially.
However our study showed that sequential dissemination is
inefficient and takes a long time to complete. Instead we
prefer transmitting both types of packets simultaneously.

A requesting sensor in MA-WSNs uses different strate-
gies for these two types: (i) for packets that can be fetched
from peer sensors, it actively requests them — similar as
that in Melete [12]; (ii) for packets that have to be fetched
from the sink node, it waits passively until its neighbors
have these packets — similar to Deluge [1]. After receiving
all packets, the requesting sensor saves the code contents in




the flash memory. In order to run application A, the sensor
needs to get the executable, load it to its program memory,
and then execute. The executable is generated by assem-
bling the saved packets with the help of the bit vector of
application A.

2.3 Adaptive Memory Management

During the code dissemination, involved sensors usually
receive and buffer a sequence of code packets before taking
the next action. There are two reasons.

e First, packets are usually received out of order due to
lossy links in WSNs. To improve dissemination ef-
fectiveness, Deluge organizes consecutive packets into
pages — the default setting is 48 packets per page.
Deluge always finishes fetching the current working
page before moving to the next one. When all packets
in the current page are received, they are written to the
flash memory.

To support this design a sensor needs the space to
buffer packets in the current page as they may be re-
ceived in any order. It is energy more efficient to write
at the end of receiving one page instead of each packet:
(i) flash writing speed is slow. It takes about 78us to
finish writing one byte to the flash. As a comparison, it
takes about 32 s to transmit one byte on MICAz nodes
[91;

(i) flash writing consumes significant energy. It re-
quires 3uJ and 1.5, to write one byte to the flash and
transmit one byte respectively [9];

(iii) flash writing has to be done at the block level e.g.
256 bytes on MICAz nodes. Since each write opera-
tion overwrites a 256 block flash, in order to change
one byte in the block, the sensor has to read the cor-
respond block, modify it in memory and then write it
back. Clearly this is very energy inefficient;

(iv) flash memory usually can sustain much smaller
number of writes during its lifetime. A flash block fails
after about 10,000 writes while a EEPROM block fails
after 100,000 writes.

Thus it is beneficial to reduce the number of writes to
the flash during the dissemination.

e Second, different sensors usually progress differently
during dissemination. As a result, a sensor often over-
hear packets from future pages as its nearby sensors
are working on them. Since this sensor will work on
those page shortly, buffering the overheard packets can
reduce the total number of packets exchanged. Thatis,
in addition to the space used to buffer the current page,
a sensor may need to allocate additional space to buffer
overheard packets from future pages.

Unfortunately the tight EEPROM budget (4KB on MI-
CAz nodes) prevents free allocation of maximal page and
cache sizes. If we use 48 packets per page, and separate
buffers for different packet types, then we need 4416 bytes
(=2 types x (1 current page + 1 next page)/type ) which is
already larger than the total space.

Since the data memory is also used to store temporary
variables, status information, and secret keys etc, the actual
free space left for buffering code packets is usually limited.
In the rest of the paper, we assume each sensor can reserve
space to buffer 96 packets, or 2208 bytes (= 96 packets *
23 bytes/packet). We then study a set of different buffer
management schemes and find the best one from them.

The simplest scheme is to adopt the default buffer setting
i.e. use 48 packet per page and divide the available memory
to two pages — one for the current page and one for the
next page. Since two types of packets are transmitted in
parallel, the buffer may be preemptively overtaken by each
other. In the worst case the scheme may enter a deadlock if
the buffers on several nearby nodes have thrashing between
the two types.

To support simultaneous transmitting both types, we
drop the unified buffer design and split the available mem-
ory in this paper.

e F(24,24) The available memory is split into two
regions for disseminating two packet types indepen-
dently. This scheme uses a smaller page size such that
each region can still save the packets from the cur-
rent page while caching the overheard packets from
the next page. We set this scheme as the baseline in
our experiments.

e F(48,24) This scheme splits the available memory
similar as thatin F (24, 24) . However we use a larger
page size (48 packets per page) for disseminating code
from peer sensors. Since there is no space left, the
packets from the next page of this type are not cached.

e F(32,16) This scheme splits the available memory
similar as thatin F (24, 24) . However we use 32 and
16 packets per page respectively for the code dissemi-
nated from peer nodes and from the sink.

e A(24,24) This scheme is similar to F(24,24).
The difference is that when the buffer for one type is
not used for a while, it can be borrowed for buffering
packets of another type.

e A(32,16) This scheme is similar to F(32,16).
The difference is that when the buffer for one type is
not used for a while, it can be borrowed for buffering
packets of another type.



3 Experiments
3.1 Settings

We have implemented and evaluated our proposed
schemes by simulating MA-WSNs of different sizes using
TOSSIM [5]. We simulated 8x8, 10x10 and 12x12 mesh
networks that consist of MICAz nodes running TinyOS
1.1[7]. We set the sink node at (0,0) and modeled the link
failure using the LossyBuilder tool with 15 feet spacing.
We modified the default code dissemination protocol Del-
uge 2.0 [1] to incorporate the support for simultaneous code
dissemination. Sensors in our MA-WSNs are pre-loaded
with application B or C'. We then disseminate application
A to a subset of nodes in the network. We ran our exper-
iments on a Intel Xeon 2.66GHz workstation and reported
the average over 10 runs.

For the baseline setting, application A has 384 packets
and needs to be disseminated to 30% nodes in the network;
applicaton B was installed on 30% nodes; application A
and B share 288 common packets, or 75% of application
A’s size.

3.2 Completion time

Fig. 4 shows the completion time for the baseline set-
ting with different buffer management schemes. In gen-
eral, schemes with adaptive buffers take less time than those
with fixed buffers. For example for 10x10 network set-
ting, A (32,16) takes 1186 seconds, a 7.5% improvement
from F (24,24) which takes 1283 seconds. On average
A(32,16) reduces the completion time by 10% compar-
ingtoF(24,24).

I F(24,24)
I F(48,24)
[ 1F(32,16)
[ A(24,24)
1500 | I A(32,16)
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8x8 10x10 12x12
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Figure 4. Completion time.

The reason for this improvement is that disseminating
code from the sink node exhibits a slow start. During the

warm up phase, sensors far away from the sink are not
working on pages of this type and thus A (32, 16) can de-
vote more space for transmitting packets from peer sensors.
In addition, some sensors progress faster than others, when
they finish downloading, they can devote all their space for
serving requests of any type. With more effective use of
the memory buffer, adaptive buffer management schemes
achieve faster dissemination speed.

3.3 Message overhead

Fig. 5 shows the message overhead for the baseline set-
ting with different schemes. The results show that caching
is effective in reducing the message overhead. While both
F(24,24) and F (48, 24) allocate the same buffer space
for transmitting peer-originated code segments, F (48, 24)
dedicates this buffer to the current page and thus has no
space to buffer future pages. F (48, 24) has more packet
retransmission and thus higher message overhead — on av-
erage it is about 6% more than F (24, 24).

Adaptive buffer management is more effective in re-
ducing the message overhead during dissemination, e.g.
A(24,24) gains about 10% message reduction compar-
ing to its fixed buffer version F (24,24). Out of all ap-
proaches, A (32,16) has the lowest message overhead —
on average 20% less than F (24, 24).
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Figure 5. Message overhead.

3.4 Sensitivity

Next we study the sensitivity of our adaptive code dis-
semination approach under different network settings.

Fig. 6 shows the message overhead results with different
number of in-network source nodes and requesting nodes
e.g. (20%,10%) means 20% nodes have application B while
we need to install application A to 10% nodes during the
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Figure 6. Message overhead with varying
source and requesting nodes.

dissemiantion. As we can see from the graph, when there
are more number of in-network sources, the message over-
head increases due to message collision. In general we ob-
served that our adaptive scheme F (32, 16) shows robust
performance for all settings.
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Figure 7. Message overhead with varying
code sizes.

Fig. 7 shows the message overhead by varying code
sizes. Clearly the message overhead increases significantly
when the code to be disseminated becomes larger. When
the code size doubles, the message overhead increases more
than 120% on average. However, we observed almost con-
stant message overhead reduction over all cases, indicating
that the adaptive scheme is also robust with code size in-
crease.
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Figure 8. Message overhead with different
packet distribution.

Fig. 8 shows the message overhead with different per-
centages of marked packets (the packets that are transmitted
from peer sensors). We evaluated in a 10x 10 network and
the total number of packets is 384. The x-axis represents
the distribution of two packet types, e.g. (25%, 75%) means
96 and 288 packets are transmitted from the sink node and
peer nodes respectively. As we can see from the figure, the
adaptive buffer management gains large message overhead
reduction when most packets can be transmitted from peer
sensors, and the benefits diminish when more packets are
from the sink node. This is expected as in the latter case
packets transmitted from peer nodes accounts for a smaller
portion of the toal transmitted packets and thus adaptive
buffer management becomes less effective.

4 Related work

Code dissemination. Several code dissemination pro-
tocols have been proposed in the literature. The ones re-
lated to our design are Deluge [1] and Melete [12]. Del-
uge is the default reprogramming protocol of TinyOS [7].
It assumes the unanimous application deployment in the
network and employs epidemic code dissemination — the
new code is first disseminated from the sink node to its 1-
hop-away neighbors , and then from 1-ho-away neighbors
to 2-hop-away neighbors and so on. The recent proposed
Melete protocol supports multiple applications and allows
in-network sources broadcasts the requested code packets
to the requesting nodes. The difference between Melete and
our scheme is that Melete can only fetch code from peer
sensors. Most other dissemination protocols such as MNP
[4] and Stream [8] assume unanimous code distribution i.e.
only one application in the network.



Incremental code update. In recognizing the expensive
wireless communication, several schemes have been pro-
posed to disseminate the code difference instead of the com-
plete code image [2, 10, 6]. When there is a need to update
the existing code, these schemes focus on minimizing the
code difference script such that the dissemination overhead
can be reduced. Our scheme is orthogonal to these designs
as we divide the code into two types and represent a more
comprehensive categorization. The above designs can be
considered as a special case in our design where all peer-
originated packets are from the node itself and thus cause
zero communication overhead.

5 Conclusions

In this paper, we study the code dissemination in MA-
WSNs. By categorizing packets into two types — these that
can be fetched from peer sensors and the rest that are from
the sink node, we propose an code dissemination scheme
with adaptive buffer management to achieve energy effi-
ciency in MA-WSNs. Our results show that on average the
adaptive scheme can reduce the completion time by 10%
and the message overehead by 20%.
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