
1

Replica Placement
Model: We consider objects (and don’ t worry whether they contain 

just data or code, or both)

Distinguish different processes: A process is capable of hosting a 
replica of an object or data:

• Permanent replicas: Process/machine always having a replica

• Server-initiated replica: Process that can dynamically host a 
replica on request of another server in the data store

• Client-initiated replica: Process that can dynamically host a 
replica on request of a client (client cache)

Replica Placement

• The logical organization of different kinds of copies of a data 
store into three concentric rings.

• Examples: web servers file servers multicast trees



2

Server-Initiated Replicas

• Keep track of access counts per file, aggregated by considering 
server closest to requesting clients

• Number of accesses drops below threshold D =>drop file

• Number of accesses exceeds threshold R =>replicate file

• Number of access between D and R =>migrate file

Client-Initiated Replicas
• More like a client cache

– Keep it on disk? 

– Keep it in memory? 

– How much space to use? 

– How long to keep copy/replica? 

– How to detect data is stale? 

• Read-only files work best

• Sharing data among client processes may be good. Sharing 
space is essential



3

Update Propagation (1/3)
• Propagate only notification/invalidation of update (often used for 

caches)

• Transfer data from one copy to another (distributed databases)

• Propagate the update operation to other copies (also called active 
replication)

Observation: No single approach is the best, but depends highly on 
available bandwidth and read-to-write ratio at replicas.

Update Propagation (2/3)

• Pushing updates: server-initiated approach, in which update is 
propagated regardless whether target asked for it.

• Pulling updates: client-initiated approach, in which client 
requests to be updated.



4

Update Propagation (3/3)
Observation: We can dynamically switch between pulling and 

pushing using leases: A contract in which the server promises to 
push updates to the client until the lease expires.

Issue: Make lease expiration time dependent on system’s behavior 
(adaptive leases):

• Age-based leases: An object that hasn’ t changed for a long time, 
will not change in the near future, so provide a long-lasting lease

• Renewal-frequency based leases: The more often a client 
requests a specific object, the longer the expiration time for that 
client (for that object) will be

• State-based leases: The more loaded a server is, the shorter the 
expiration times become

Question: Why are we doing all this?

Epidemic Algorithms
Basic idea: Assume there are no write–write conflicts:

• Update operations are initially performed at one or only a few 
replicas

• A replica passes its updated state to a limited number of 
neighbors

• Update propagation is lazy, i.e., not immediate

• Eventually, each update should reach every replica

Anti-entropy: Each replica regularly chooses another replica at 
random, and exchanges state differences, leading to identical 
states at both afterwards

Gossiping: A replica which has just been updated (i.e., has been 
contaminated), tells a number of other replicas about its update 
(contaminating them as well).



5

System Model
• We consider a collection servers, each storing a number of 

objects

• Each object O has a primary server at which updates for O
are always initiated (avoiding write-write conflicts)

• An update of object O at server S is always time-stamped; 
the value of O at S is denoted VAL(O,S)

• T(O,S) denotes the timestamp of the value of object O at 
server S

Anti-Entropy
• Basic issue: When a server S contacts another server S* to 

exchange state information, three different strategies can be 
followed:

• Push: S only forwards all its updates to S*:
if T(O,S*) < T(O,S)
then VAL(O,S*) <= VAL(O,S)

• Pull: S only fetched updates from S*:
if T(O,S*) > T(O,S)
then VAL(O,S*) <= VAL(O,S)

• Push-Pull: S and S* exchange their updates by pushing and 
pulling values. 

• Observation: if each server periodically randomly chooses 
another server for exchanging updates, an update is propagated 
in O(log(N)) time units.

Question: why is pushing alone not efficient when many servers 
have already been updated?



6

Gossiping
Basic model: A server S having an update to report, contacts other 

servers. If a server is contacted to which the update has already 
propagated, S stops contacting other servers with probability 1/k.

If s is the fraction of ignorant servers (i.e., which are unaware of the 
update), it can be shown that with many servers:

s = e-(k+1)(1-s)

Observation: If we really have to ensure that all 
servers are eventually updated, gossiping alone is 
not enough

Deleting Values
Fundamental problem: We cannot remove an old value from a server and 

expect the removal to propagate. Instead, mere removal will be undone in 
due time using epidemic algorithms

Solution: Removal has to be registered as a special update by inserting a 
death certificate

Next problem: When to remove a death certificate (it is not allowed to stay 
forever):

• Run a global algorithm to detect whether the removal is known 
everywhere, and then collect the death certificates (looks like garbage 
collection)

• Assume death certificates propagate in finite time, and associate a 
maximum lifetime for a certificate (can be done at risk of not reaching all 
servers)

Note: it is necessary that a removal actually reaches all servers.

Question: What’s the scalability problem here?



7

Consistency Protocols
Consistency protocol: describes the implementation of a 

specific consistency model. We will concentrate only on 
sequential consistency.

• Primary-based protocols

• Replicated-write protocols

• Cache-coherence protocols

Primary-Based Protocols (1/4)
• All read and write operations go to server

• Example: used in traditional client-server systems that 
do not support replication.



8

Primary-Based Protocols (2/4)
Primary-backup protocol: writes are typically forwarded to server

Example: Traditionally applied in distributed databases and file systems that 
require a high degree of fault tolerance. Replicas are often placed on same LAN.

Primary-Based Protocols (3/4)

Example: Establishes only a fully distributed, non-replicated data store. Useful 
when writes are expected to come in series from the same client (e.g., mobile 
computing without replication.

Primary-based, local-write protocol: migrate the data, do not replace it.



9

Primary-Based Protocols (4/4)

Example: Distributed shared memory systems, but also mobile 
computing in disconnected mode (ship all relevant files to user before 
disconnecting, and update later on).

Primary-backup protocol with local writes: replicate data only for reading

Replicated-Write Protocols(1/2)
• Active replication: Updates are forwarded to multiple replicas, 
where they are carried out. 

• One problem to deal with: replicated invocations:



10

Replicated-Write Protocols (2/2)
Replicated invocations: “Centralized”  Solution Assign a 

coordinator on each side (client and server), which ensures 
that only one invocation (a), and one reply is send (b).

Triple Modular Redundancy
• Simple to implement

• Vote on all three results

• Majority (50% + 1) wins Request is 
replicated to 
all servers. 

Request

A1 A2 A3

Voter

A Result



11

Quorum-Based Protocols

Quorum-based protocols: Ensure that each operation

is carried out in such a way that a majority vote is

established: distinguish read quorum and write quorum:

Example: Lazy Replication

• Basic model: number of replica servers jointly implement a 
causal-consistent data store. 

• Clients normally talk to front ends which maintain data to 
ensure causal consistency.


