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Clock Synchronization

• Physical clocks

• Logical clocks

• Vector clocks

Physical Clocks

Problem: Suppose we have a distributed system with a UTC-
receiver somewhere in it we still have to distribute its time to
each machine.

UTC is Universal Coordinated Time, based on some atomic element (Cs)

Basic principle:
• Every machine has a timer that generates an interrupt H times 

per second.

• There is a clock in machine p that ticks on each timer interrupt. 
Denote the value of that clock by Cp{t}, where t is UTC time.

• Ideally, we have that for each machine p, Cp{t} = t, or, in other 
words, dC/dt =1
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Clock Synchronization Algorithms

In practice: 1 – ρ <= dC/dt <= 1 + ρ, for some small constant drift ρ
Goal: Never let two clocks in any system differ by more than δ time units 

�
synchronize at least every δ/(2ρ) seconds

Clock Synchronization
Idea 1: Every machine asks a time server for the accurate time at least once 

every d/(2r) seconds.

Good solution, but
• need an accurate measure of round trip delay

• including interrupt handling and processing incoming messages. 

Idea 2: Let the time server scan all machines periodically, calculate an
average, and inform each machine how it should adjust its time relative 
to its present time.

Another good solution, you’ ll probably get every machine in sync. 

Fundamental problem: You’ ll have to take into account that setting the 
time back is never allowed � smooth adjustments.

Note: you don’ t even need to propagate UTC time. Why not?
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The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock

The Happened-Before Relationship
Problem: We first need to introduce a notion of ordering

before we can order anything.

The happened-before relation on the set of events in a 
distributed system is the smallest relation satisfying:

• If a and b are two events in the same process, and a comes 
before b, then a 

�
b.

• If a is the sending of a message, and b is the receipt of that 
message, then a � b. 

• If a � b and b � c, then a � c.

• Is this a partial or total ordering of events in a system with 
concurrently operating processes?
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Logical Clocks

Problem: How do we maintain a global view on the system’s 
behavior that is consistent with the happened-before relation?

Solution: attach a timestamp C(e) to each event e, satisfying the 
following properties:

• P1: If a and b are two events in the same process, and 
a � b, then we demand that C(a) < C(b). 

• P2: If a corresponds to sending a message m, and b
corresponds to receiving that message, 
then also C(a) < C(b).

Problem: How to attach a timestamp to an event when there’s no 
global clock � maintain a consistent set of logical clocks, one 
per process.

Logical Clocks

Each process Pi maintains a local counter Ci and adjusts this counter 
according to the following rules:

1. For any two successive events that take place within Pi , Ci is 
incremented by 1.  

2. Each time a message m is sent by process Pi, the message 
receives a timestamp Tm = Ci

3. Whenever a message m is received by a process Pj, Pj, adjusts 
its local counter Cj:

Cj <= max {Cj + 1, Tm + 1}.

Property P1 is satisfied by (1); Property P2 by (2) and (3). 
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Extension to Multicasting: 
Vector Timestamps

Observation: Lamport timestamps do not guarantee that if 
C(a) < C(b) then a indeed happened before b.   Why? 

We need vector timestamps for that.

• Each process Pi has an array Vi [1..n] , where Vi [ j] denotes the 
number of events that process Pi knows have taken place at 
process Pj.

• When Pi sends a message m, it adds 1 to Vi [ i] , and sends Vi

along with mas vector timestamp vt(m).
Result: upon arrival, each other process knows Pi’s timestamp.

Question: What does Vi[ j]  = k mean in terms of messages sent 
and received? 

Extension to Multicasting: 
Vector Timestamps

• When a process Pj receives a message m from Pi with vector 
timestamp vt(m), it (1) updates each Vj [k] to max {Vj [k] , 
V(m)[k] }, and (2) increments Vj [ j] by 1

• Is the book correct? 

• To support causal delivery of messages, assume you increment 
your own component only when sending a message. Then, Pj

postpones delivery of m until: 
– Vt (m)[ i]  = Vj [ i]  + 1

– Vt (m)[k]  <= Vj [ k]  for k != i

Example: Take V3 = [0,2,2] , vt (m) = [1,3,0] . What information does P3

have, and what will it do when receiving m (from P1)? 
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Global State (1)
Basic Idea: Sometimes you want to collect the current state of a 
distributed computation, called a distributed snapshot. It 
consists of all local states and messages in transit.

Important: A distributed snapshot should reflect a consistent 
state:

Global State

Note: any process P can initiate taking a distributed snapshot

• P starts by recording its own local state

• P subsequently sends a marker along each of its outgoing 
channels

• When Q recieves a marker through channel C, its action depends 
on whether it has already recorded its local state: 
– Not yet recorded: it records its local state, and sends the marker along each 

of its outgoing channels

– Already recorded: the marker on C indicates that the channel’s state should 
be recorded: all messages received before this marker and the time Q 
recorded its own state. 

• Q is finished when it has received a marker along each of its 
incoming channels. 
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Global State (2)

a) Organization of a process and channels for a distributed 
snapshot

Global State (3)

b) Process Q receives a marker for the first time and records its local 
state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording 

the state of the incoming channel
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Election Algorithms

Principle: An algorithm requires that some process acts as a 
coordinator. The question is how to select this special process 
dynamically.

Note: In many systems the coordinator is chosen by hand (e.g. file 
servers). This leads to centralized solution 	 single point of 
failure.

Question: If a coordinator is chosen dynamically, to what extent 
can we speak about a centralized or distributed solution?

Question: Is a fully distributed solution, i.e., one without a 
coordinator, always more robust than any centralized/coordinated
solution?

Election by Bullying

Principle: Each process has an associated priority (weight). The 
process with the highest priority should always be elected as the 
coordinator.

Issue: How do we find the heaviest process? 

• Any process can just start an election by sending an election 
message to all other processes (assuming you don’ t know the 
weights of the others).

• If a process Pheavy receives an election message from a lighter 
process Plight, it sends a take-over message to Plight. Plight is out 
of the race.

• If a process doesn’ t get a take-over message back, it wins, and 
sends a victory message to all other processes.
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The Bully Algorithm (1)

The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

The Bully Algorithm (2)

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone


