
Reliable Distributed 
Storage

Presented by: James Larkby-Lahet
Including material from ‘Outshining Mirrors: MTTDL of 
Fixed-Order SSPiRAL Layouts’ by Ahmed Amer Jehan-
François Paˆris, Thomas Schwarz, Vincent Ciotola and 

James Larkby-Lahet



Why We Want 
Reliability

• Most modern systems are comprised of 
many components (Supercomputers - 
nodes, Virtualized Storage - disks)

• Without redundancy, the System likelihood 
of failure is the sum of the component’s 
likelihoods of failure

• As systems grow, they become more 
unreliable



What Needs to be 
Reliable?

• Storage is persistent ‘state’

• without statefulness, all systems are trivially 
‘fault-tolerant’

• webservers can drop out and the client 
will retry a request

• So in some sense, storage fault-tolerance is 
a redundant phrase 



Redundancy codes

• Create redundant information about 
relationships between data: Parities

• Used for Communication and for data 
Storage

• Error codes for noisy channels 

• Erasure codes for stop-fault models



Optimal Codes

• N of M

• Hard to compute - multiplying big matrices

• data may be ‘scrambled’ in with parity, 
requiring a decode step even without a 
fault



RAID - Special Optimal 
Codes

• RAID 4,5 - XOR based parity

• RAID 6 - additional parity, using Reed-
Solomon code

• RAID DP

• Triple Redundant Parity -- The free lunch 
limit, I think



What about Mirroring?

• How Reliable are 3 disks with 3 mirrors?





SSPiRAL

• Survivable Storage using Parity in 
Redundant Array Layout

• Mirroring is not the best way to provide 
arbitrary reliability

• Xor Based Parities

• two or more data blocks combined in each 
Parity block



Example SSPiRAL 
arrays





Unreliability



Which Nodes should 
we Use?

• There are 2^N-1 possible nodes

• Not all nodes improve reliability equally

• We need a way to evaluate different node’s 
contributions, which changes relative to the 
other nodes in the system



Simulation 1

• Brute Force!

• generate all possible array layouts (GBs in 
size for N=12)

• for each, recursively kill nodes until data 
loss occurs, in all possible combinations

• also need a fast way to test for ‘liveness’

• naively (2^N-1)! steps



Simulation II

• In the previous approach, killing a node 
involves solving for the reliability of a 
sublayout

• We can work from the bottom up (all 
layouts of size N) and solve for the 
reliability of all layouts (for a given N) 
simultaneously



Simulation III

• Symmetries that can be eliminated

• What is the difference between 1,2,4,1^2 
and 1,2,4,1^4

• Just names for the same thing

• still have to permute name to find

• Open problem: are there other, more 
complex symmetries?



An Aside: Liveness 
Testing

• Binary Decision Diagrams allow efficent 
storage and worst-case linear-time testing 
of a boolean function

• we can write a boolean function for data 
liveness with 2(N-1) boolean variables

• space-time tradeoff, much faster than 
attempting to recover data by brute force



Modeling Reliability 
Mathematically

• Markov Chains - a collection of states and 
transitions between them

• lambda - likelihood of a disk failure

• mu - probability of disk repair 



Markov Chains



Solving for MTTDL



Making SSPiRAL 
‘optimal’

• Critical nodes are ones that can lead to 
data loss

• can we avoid critical nodes by 
reconfiguring?



Best Recovery



Rebuild States



Problems

• Most Reliable states are not always parents 
of each other

• Simulation is required to discover layout 
reliabilities and equivalences

• O(2^N-1) :(

• can we find symmetries, reasons some 
layouts have the same reliability?



Using Asymmetry

• Some Nodes are more valuable than others

• Some hardware is more reliable than 
others

• Should we map more important nodes to 
more reliable hardware?



load balancing


