Reliable Distributed
Storage

Presented by: James Larkby-Lahet
Including material from ‘Outshining Mirrors: MTTDL of
Fixed-Order SSPiRAL Layouts’ by Ahmed Amer Jehan-
Francois Paris, Thomas Schwarz,Vincent Ciotola and
James Larkby-Lahet

VWhy We Want
Reliability

® Most modern systems are comprised of
many components (Supercomputers -
nodes, Virtualized Storage - disks)

® Without redundancy, the System likelihood
of failure is the sum of the component’s
likelihoods of failure

® As systems grow, they become more
unreliable

What Needs to be
Reliable?

® Storage is persistent ‘state’

® without statefulness, all systems are trivially
‘fault-tolerant’

® webservers can drop out and the client
will retry a request

® So in some sense, storage fault-tolerance is
a redundant phrase

Redundancy codes

Create redundant information about
relationships between data: Parities

Used for Communication and for data
Storage

Error codes for noisy channels

Erasure codes for stop-fault models

Optimal Codes

® Nof M
® Hard to compute - multiplying big matrices

® data may be ‘scrambled’ in with parity,
requiring a decode step even without a

fault

RAID - Special Optimal
@feTa [2

e RAID 4,5 - XOR based parity

® RAID 6 - additional parity, using Reed-
Solomon code

e RAID DP

® Triple Redundant Parity -- The free lunch
limit, | think

What about Mirroring!?

® How Reliable are 3 disks with 3 mirrors?

SSPIRAL

Survivable Storage using Parity in
Redundant Array Layout

Mirroring is not the best way to provide
arbitrary reliability

Xor Based Parities

two or more data blocks combined in each
Parity block

Example SSPiRAL
arrays

Unreliability

Unreliability

=0
-
o
]
o
o
o)
o
]
o8]
C
c
-

Hidth 4, Xorder 2
Hidth 4, Xorder 3
Hidth 4, Xorder 4
opt 6 of H

opt 5 of H

opt 4 of H

Hidth 4, Hulti-Xorder
Raid 1

Raid 5

10
of disks

Which Nodes should
we Use!?

® There are 2 N-| possible nodes
® Not all nodes improve reliability equally

® VWe need a way to evaluate different node’s
contributions, which changes relative to the
other nodes in the system

Simulation |

® Brute Force!

® generate all possible array layouts (GBs in
size for N=12)

® for each, recursively kill nodes until data
loss occurs, in all possible combinations

® also need a fast way to test for ‘liveness’

® naively (2*N-1)! steps

Simulation I

In the previous approach, killing a node
involves solving for the reliability of a

sublayout

We can work from the bottom up (all
layouts of size N) and solve for the
reliability of all layouts (for a given N)
simultaneously

Simulation |l

® Symmetries that can be eliminated

® What is the difference between 1,2,4,|172
and 1,2,4,1 4

® Just names for the same thing
® still have to permute name to find

® Open problem: are there other, more
complex symmetries?

An Aside: Liveness
Jesting

® Binary Decision Diagrams allow efficent
storage and worst-case linear-time testing

of a boolean function

® we can write a boolean function for data
liveness with 2(N-1) boolean variables

® space-time tradeoff, much faster than
attempting to recover data by brute force

Modeling Reliability
Mathematically

® Markov Chains - a collection of states and
transitions between them

® |ambda - likelihood of a disk failure

® mu - probability of disk repair

Markov Chains
O=0%"

Figure 3: 3+3 disk SSPiRAL array.

Solving for MTTDL

[Data
\ loss

.-"/"'

Making SSPiRAL
‘optimal’

® Critical nodes are ones that can lead to
data loss

® can we avoid critical nodes by
reconfiguring?

Best Recovery

-1
@\‘\1/“
T

&

=

IS8

Rebuild States

(f*»
. 3 .
.ﬂ / 1.>\ IIJ 9 /
7 4N Y. .7 4l
/ ‘ L . y

" 4RRR | | A/b 4RR 1A L

o) ey
apsr . B 4;;4)\ ¢

Y
J3RRR 1A --w 3RR 1A

\\

Problems

Most Reliable states are not always parents
of each other

Simulation is required to discover layout
reliabilities and equivalences

O(2*N-1) (

can we find symmetries, reasons some
layouts have the same reliability?

Using Asymmetry

® Some Nodes are more valuable than others

® Some hardware is more reliable than
others

® Should we map more important nodes to
more reliable hardware!

oad balancing

