
Fault Tolerance

Chapter 7

Basic Concepts

Dependability Includes

• Availability

• Reliability

• Safety

• Maintainability

Failure Models

Different types of failures.
What about “fail-stop,” “fail-silent,” and “fail-safe”?

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure

Receive omission

Send omission

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure

Value failure

State transition failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Failure Masking by Redundancy

Triple modular redundancy.
Q: If we have three voters, why would we need three voting booths?

Flat Groups versus Hierarchical Groups

a) Communication in a flat group.

b) Communication in a simple hierarchical group

Lost Request Messages

Server Crashes (1)

A server in client-server communication

a) Normal case

b) Crash after execution

c) Crash before execution

Server Crashes (2)

Different combinations of client and server strategies in the
presence of server crashes.

Client Server

Strategy M -> P Strategy P -> M

Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)

Always DUP OK OK DUP DUP OK

Never OK ZERO ZERO OK OK ZERO

Only when ACKed DUP OK ZERO DUP OK ZERO

Only when not ACKed OK ZERO OK OK DUP OK

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all
receivers are known and are assumed not to fail

a) Message transmission

b) Reporting feedback

Nonhierarchical Feedback Control

Several receivers have scheduled a request for

retransmission, but the first retransmission request

leads to the suppression of others.

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.

a) Each local coordinator forwards the message to its children.

b) A local coordinator handles retransmission requests.

Remember … this is with reliable processes, what about voting?

Two-Phase Commit (1)

a) The finite state machine for the coordinator in 2PC.

b) The finite state machine for a participant.

Two-Phase Commit (2)

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Two-Phase Commit (3)

Outline of the steps taken by the coordinator
in a two phase commit protocol

actions by coordinator:

while START _2PC to local log;

multicast VOTE_REQUEST to all participants;

while not all votes have been collected {

wait for any incoming vote;

if timeout {

while GLOBAL_ABORT to local log;

multicast GLOBAL_ABORT to all participants;

exit;

}

record vote;

}

if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

write GLOBAL_COMMIT to local log;

multicast GLOBAL_COMMIT to all participants;

} else {

write GLOBAL_ABORT to local log;

multicast GLOBAL_ABORT to all participants;

}

Two-Phase Commit (4)

Steps taken by

participant

process in

2PC.

actions by participant:

write INIT to local log;

wait for VOTE_REQUEST from coordinator;

if timeout {

write VOTE_ABORT to local log;

exit;

}

if participant votes COMMIT {

write VOTE_COMMIT to local log;

send VOTE_COMMIT to coordinator;

wait for DECISION from coordinator;

if timeout {

multicast DECISION_REQUEST to other participants;

wait until DECISION is received; /* remain blocked */

write DECISION to local log;

}

if DECISION == GLOBAL_COMMIT

write GLOBAL_COMMIT to local log;

else if DECISION == GLOBAL_ABORT

write GLOBAL_ABORT to local log;

} else {

write VOTE_ABORT to local log;

send VOTE ABORT to coordinator;

}

Two-Phase Commit (5)

Steps taken for handling incoming decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {

wait until any incoming DECISION_REQUEST is received; /* remain blocked */

read most recently recorded STATE from the local log;

if STATE == GLOBAL_COMMIT

send GLOBAL_COMMIT to requesting participant;

else if STATE == INIT or STATE == GLOBAL_ABORT

send GLOBAL_ABORT to requesting participant;

else

skip; /* participant remains blocked */

Three-Phase Commit

a) Finite state machine for the coordinator in 3PC

b) Finite state machine for a participant

Recovery Stable Storage

a) Stable Storage

b) Crash after drive 1 is updated

c) Bad spot

Checkpointing

A recovery line.

Independent Checkpointing

The domino effect.

Message Logging

Incorrect replay of messages after recovery,

leading to an orphan process.

