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Introduction to OS (cs1550)

• Why take this class?  Why with Mosse?

– it’s mandatory 

– it’s a great class

– it’s a great prof

– it’s easy (NOT!!!!  do not fool thyself!)

– it’s good for you

• Life is not life anymore while this class is going on.  
Be careful!  Specially if you’re taking also compilers or 
some other hard programming class…
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Class Outline

• Book: Tanenbaum’s Modern OSs

• Intro to OSs (including Real-Time OSs)

• Processes (definition, synchronization, management)

• Memory (virtual memory, memory allocation)

• IO (disks, sensors, actuators, keyboards, etc)

• InterProcess Communication (networking, data 
transmission, etc)

• Fault Tolerance, Real-Time and Security (time 
permitting)
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Operating Systems

• Manages different resources (CPU, mem, disk, etc)

• Improves performance (response time, throughput, etc)

• Allows portability, enables easier programming (no 
need to know what the underlying hardware)

• Interface between the hardware and the rest of the 
machine… editors, compilers, user programs, etc

• Standard interface is typically done in two ways:

– system calls: control goes to the Operating System

– library calls: control remains with the User
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Brief History

• First Generation of computers had no OS: single-user.  
All coding done directly in machine language, memory 
resident code (no other resources to manage)

• Second Generation has basic OS: batch processing.  
Read input (tape/cards), process, output to tape or print

• Third Generation improved life: multiprogramming!

Careful partitioning of memory space (4-12KB), drums 
and disks added for reading cards and spooling outputs 
(Simultaneous Peripherals Operations On-Line)

• Time-sharing created several virtual machines
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History (cont)

• Fourth Generation: PCs and workstations.  Cheaper, 
faster, more user-friendly (Thank Macs for interfaces!)

• UNIX precursor MULTICS (MULTIplexed Information 

and Computing Services) was the first “modern” OS.  
Bell+MIT+GE (MULTICS --> units --> Unix)

• Berkeley improved on it: paging, virtual memory, file 
systems, signals (interrupts), networking!
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Networking!

• Networked OSs are connected through a network, but 
user needs to know the name/type/location of everything

• Distributed OSs (e.g., Amoeba, Mach, Locus) provide 
transparency to user, yielding one huge virtual machine!

• Specialized OSs are built for specific purposes: routing 
engines (Networking), lisp machines (AI), time 
constrained applications (Real-Time), Internet (WWW 
servers), massively parallel uses (supercomputers), etc

• All these are coming together, hard to identify 
boundaries anymore.  
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Microsoft World

• Excellent marketing, some good products

• OSs started with DOS (Disk OS), no nothing, just very 
simple commands!

• Windows 3.1 was a huge jump (based on decades-old 
technology initially developed at Xerox then Macs)

• Windows 95 (released in 96) improved tremendously 
the state-of-the-affairs for MS, but still unreliable

• Windows NT approaches Unix distributions, with 
more user-friendly interface.
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Unix World

• Created at AT&T, re-written/improved by Berkeley

• ATT had majority control and good support (reliable OS)

• OSF (Open SW Foundation, now Open Group) is a 
consortium of several companies to standardize UNIX

• Different subgroups (syscalls, shells, RT, etc)

• Standardization is with respect to interfaces and not 
implementation of primitives.  Impln is left to the implr

• Modern applications are time constrained (tel, video, etc)

• Real-Time playing an increasingly important role
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OS Structure

• Interface can be done at
any level (depends on
level of security of OS)

• Interface with the lower
level layer gets translated

• Machine dependent language 
used for accessing hardware

• Main advantage of direct resource access is efficiency

• Main advantage of indirect  access is portability

• Completely layered OS?  Why or why not?

USER

OS

Hardware

Dev Drivers
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OS Functions

• Controls and manages resources (disks, memory, CPU, 
…); sends/receives control commands and data

• Allows multiprogramming (several programs “at the 
same time” in the same resource)

• Carries out communication between processes (inter 
and intra processor)

• Manages interrupt handlers for HW and SW interrupts

• Provides protection and security to processes

• Prioritizes requests and manages multiple resources in 
a single machine (eg multiprocessors or CPU IO reqs)
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OS Functions

• OS manages resources, including management of

– processes (creation, deletion, suspension, comm, synch)

– main memory (usage, alloc/de-alloc, which processes get it)

– 2ary storage (disk scheduling, alloc/de-alloc, swapping, files)

– IO interfaces and devices (eg, keyboard, caching, memory)

– protection (authorization, file and memory protection, etc)

– InterProcess Communication (intra- and inter-machines)

– Command interpretation (shells to Xlate user to OS).  
Typically includes the user interface that the OS uses.
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OS Structure

• Hardware at the bottom layer

• Accessing the lower layer thru
the higher layers

• DOS programs can access HW

• Unix has controllers and dev
drivers (DD) controlling devices

• system calls are the interface
between user and OS (DDs)

• libraries and system programs
invoke sys_calls

USER

OS

Hardware

Dev Drivers

Typical DOS

Typical Unix

USER

Kernel Functions

Hardware

Dev Drivers

System Programs
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OS Structure

• Interface can be done at any level (depends on security)

• Machine dependent language used for accessing HW

• Main advantage of direct resource access is efficiency 
(less layers means less overhead, ie, better performance

• Main advantage of indirect access (syscall) is portability

• Modular approaches (ind access) have less flexibility, 
since appls only access HW thru libraries and sys_calls

• Layering means that one level is defined in terms of the 
level below (level 0 is the HW, level n is the user appls)
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Modular Approach

• Create well-defined interfaces between any two layers

• Create well-defined properties of each layer

• Attempt to decrease the number of layers to improve 
efficiency and performance

• The final goal is to make the OS flexible and efficient

• Create the layers such that each user perceives the 
machine as belonging solely to himself or herself

• This is the concept of a virtual machine, which allows 
each user to avoid thinking about others’ processes
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Language

• System calls are the interface between user and OS

• Access to the resources is done through priviledged
instructions (for protection)

• User applications cannot execute in kernel mode

• User applications user libraries that invoke sys_calls

• System procedures are executed to access resources, 
via priviledged instructions (called from sys_calls)

• This way, no process can influence other executions, 
on purpose or by accident: resource protection

• Example: accounting, priority information
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Language (cont)

• System calls can be divided into 5 categories:

– process control

– file manipulation

– device manipulation

– infomation maintenance

– communication

• Special purpose OSs can also have special primitives:

– specification of deadlines, priorities, periodicity of processes

– specification of precedence constraints and/or 
synchronization among processes
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Language (cont)

• Examples of libraries are language constructs to carry 
out formatted printing

• Examples of sys_calls are primitives to create a process

• For example, the reading of 10 bytes of a file:
– The user does fscanf, the kernel requests a block of bytes 

from the device driver (DD), which talks to the controller of 
the disk to obtain a block of data.  The block is transfered
into a buffer, in the kernel address space.  The kernel then 
picks the 10 bytes and copies them into the user-specified 
location.  This way, the kernel accesses kernel and user 
space, but the user only accesses user space! 
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System Programs

• System programs do not interact directly with running 
user programs, but define a better environmnt for the 
development of application programs.

• Sys programs include: compilers, file manipulation and 
modification, editors, linker/loaders, etc

• An important one is the command interpreter (or shell), 
which parses user input, interprets it, and executes it

• Shells can either execute the command, or invoke other 
system programs or system calls to do it.

• Trade-offs: performance, increasing/updating # of commands
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More on Languages

• Different process types have different requirements

• Different requirements beg for different languages

• Assembly, Lisp, Prolog, Java, RT-C, etc.

• Real-time languages inform the OS about its needs in 
order to enhance the predictability of its execution

– deadline of a thread (by when do I need this done)

– period of a thread (what is the frequency of this task?)

– resources to be used (amount of memory or semaphores)

– precedence constraints (door must be open for a robot to exit)


