
Intro to OS Pitt Mossé

Introduction to OS (cs1550)

• Why take this class? Why with Mosse?

– it’s mandatory

– it’s a great class

– it’s a great prof

– it’s easy (NOT!!!! do not fool thyself!)

– it’s good for you

• Life is not life anymore while this class is going on.
Be careful! Specially if you’re taking also compilers or
some other hard programming class…

Intro to OS Pitt Mossé

Class Outline

• Book: Tanenbaum’s Modern OSs

• Intro to OSs (including Real-Time OSs)

• Processes (definition, synchronization, management)

• Memory (virtual memory, memory allocation)

• IO (disks, sensors, actuators, keyboards, etc)

• InterProcess Communication (networking, data
transmission, etc)

• Fault Tolerance, Real-Time and Security (time
permitting)

Intro to OS Pitt Mossé

Operating Systems

• Manages different resources (CPU, mem, disk, etc)

• Improves performance (response time, throughput, etc)

• Allows portability, enables easier programming (no
need to know what the underlying hardware)

• Interface between the hardware and the rest of the
machine… editors, compilers, user programs, etc

• Standard interface is typically done in two ways:

– system calls: control goes to the Operating System

– library calls: control remains with the User

Intro to OS Pitt Mossé

Brief History

• First Generation of computers had no OS: single-user.
All coding done directly in machine language, memory
resident code (no other resources to manage)

• Second Generation has basic OS: batch processing.
Read input (tape/cards), process, output to tape or print

• Third Generation improved life: multiprogramming!

Careful partitioning of memory space (4-12KB), drums
and disks added for reading cards and spooling outputs
(Simultaneous Peripherals Operations On-Line)

• Time-sharing created several virtual machines

Intro to OS Pitt Mossé

History (cont)

• Fourth Generation: PCs and workstations. Cheaper,
faster, more user-friendly (Thank Macs for interfaces!)

• UNIX precursor MULTICS (MULTIplexed Information

and Computing Services) was the first “modern” OS.
Bell+MIT+GE (MULTICS --> units --> Unix)

• Berkeley improved on it: paging, virtual memory, file
systems, signals (interrupts), networking!

Intro to OS Pitt Mossé

Networking!

• Networked OSs are connected through a network, but
user needs to know the name/type/location of everything

• Distributed OSs (e.g., Amoeba, Mach, Locus) provide
transparency to user, yielding one huge virtual machine!

• Specialized OSs are built for specific purposes: routing
engines (Networking), lisp machines (AI), time
constrained applications (Real-Time), Internet (WWW
servers), massively parallel uses (supercomputers), etc

• All these are coming together, hard to identify
boundaries anymore.

Intro to OS Pitt Mossé

Microsoft World

• Excellent marketing, some good products

• OSs started with DOS (Disk OS), no nothing, just very
simple commands!

• Windows 3.1 was a huge jump (based on decades-old
technology initially developed at Xerox then Macs)

• Windows 95 (released in 96) improved tremendously
the state-of-the-affairs for MS, but still unreliable

• Windows NT approaches Unix distributions, with
more user-friendly interface.

Intro to OS Pitt Mossé

Unix World

• Created at AT&T, re-written/improved by Berkeley

• ATT had majority control and good support (reliable OS)

• OSF (Open SW Foundation, now Open Group) is a
consortium of several companies to standardize UNIX

• Different subgroups (syscalls, shells, RT, etc)

• Standardization is with respect to interfaces and not
implementation of primitives. Impln is left to the implr

• Modern applications are time constrained (tel, video, etc)

• Real-Time playing an increasingly important role

Intro to OS Pitt Mossé

OS Structure

• Interface can be done at
any level (depends on
level of security of OS)

• Interface with the lower
level layer gets translated

• Machine dependent language
used for accessing hardware

• Main advantage of direct resource access is efficiency

• Main advantage of indirect access is portability

• Completely layered OS? Why or why not?

USER

OS

Hardware

Dev Drivers

Intro to OS Pitt Mossé

OS Functions

• Controls and manages resources (disks, memory, CPU,
…); sends/receives control commands and data

• Allows multiprogramming (several programs “at the
same time” in the same resource)

• Carries out communication between processes (inter
and intra processor)

• Manages interrupt handlers for HW and SW interrupts

• Provides protection and security to processes

• Prioritizes requests and manages multiple resources in
a single machine (eg multiprocessors or CPU IO reqs)

Intro to OS Pitt Mossé

OS Functions

• OS manages resources, including management of

– processes (creation, deletion, suspension, comm, synch)

– main memory (usage, alloc/de-alloc, which processes get it)

– 2ary storage (disk scheduling, alloc/de-alloc, swapping, files)

– IO interfaces and devices (eg, keyboard, caching, memory)

– protection (authorization, file and memory protection, etc)

– InterProcess Communication (intra- and inter-machines)

– Command interpretation (shells to Xlate user to OS).
Typically includes the user interface that the OS uses.

Intro to OS Pitt Mossé

OS Structure

• Hardware at the bottom layer

• Accessing the lower layer thru
the higher layers

• DOS programs can access HW

• Unix has controllers and dev
drivers (DD) controlling devices

• system calls are the interface
between user and OS (DDs)

• libraries and system programs
invoke sys_calls

USER

OS

Hardware

Dev Drivers

Typical DOS

Typical Unix

USER

Kernel Functions

Hardware

Dev Drivers

System Programs

Intro to OS Pitt Mossé

OS Structure

• Interface can be done at any level (depends on security)

• Machine dependent language used for accessing HW

• Main advantage of direct resource access is efficiency
(less layers means less overhead, ie, better performance

• Main advantage of indirect access (syscall) is portability

• Modular approaches (ind access) have less flexibility,
since appls only access HW thru libraries and sys_calls

• Layering means that one level is defined in terms of the
level below (level 0 is the HW, level n is the user appls)

Intro to OS Pitt Mossé

Modular Approach

• Create well-defined interfaces between any two layers

• Create well-defined properties of each layer

• Attempt to decrease the number of layers to improve
efficiency and performance

• The final goal is to make the OS flexible and efficient

• Create the layers such that each user perceives the
machine as belonging solely to himself or herself

• This is the concept of a virtual machine, which allows
each user to avoid thinking about others’ processes

Intro to OS Pitt Mossé

Language

• System calls are the interface between user and OS

• Access to the resources is done through priviledged
instructions (for protection)

• User applications cannot execute in kernel mode

• User applications user libraries that invoke sys_calls

• System procedures are executed to access resources,
via priviledged instructions (called from sys_calls)

• This way, no process can influence other executions,
on purpose or by accident: resource protection

• Example: accounting, priority information

Intro to OS Pitt Mossé

Language (cont)

• System calls can be divided into 5 categories:

– process control

– file manipulation

– device manipulation

– infomation maintenance

– communication

• Special purpose OSs can also have special primitives:

– specification of deadlines, priorities, periodicity of processes

– specification of precedence constraints and/or
synchronization among processes

Intro to OS Pitt Mossé

Language (cont)

• Examples of libraries are language constructs to carry
out formatted printing

• Examples of sys_calls are primitives to create a process

• For example, the reading of 10 bytes of a file:
– The user does fscanf, the kernel requests a block of bytes

from the device driver (DD), which talks to the controller of
the disk to obtain a block of data. The block is transfered
into a buffer, in the kernel address space. The kernel then
picks the 10 bytes and copies them into the user-specified
location. This way, the kernel accesses kernel and user
space, but the user only accesses user space!

Intro to OS Pitt Mossé

System Programs

• System programs do not interact directly with running
user programs, but define a better environmnt for the
development of application programs.

• Sys programs include: compilers, file manipulation and
modification, editors, linker/loaders, etc

• An important one is the command interpreter (or shell),
which parses user input, interprets it, and executes it

• Shells can either execute the command, or invoke other
system programs or system calls to do it.

• Trade-offs: performance, increasing/updating # of commands

Intro to OS Pitt Mossé

More on Languages

• Different process types have different requirements

• Different requirements beg for different languages

• Assembly, Lisp, Prolog, Java, RT-C, etc.

• Real-time languages inform the OS about its needs in
order to enhance the predictability of its execution

– deadline of a thread (by when do I need this done)

– period of a thread (what is the frequency of this task?)

– resources to be used (amount of memory or semaphores)

– precedence constraints (door must be open for a robot to exit)

