
CS/COE 1550
Intro to Operating Systems

Fall 2018

Daniel Mosse
mosse@cs.pitt.edu

6423 Sennott Square

(Some slides are from Silberschatz, Galvin and Gagne ©2013; some from Dr. Khattab)

Course Goal
•  Learn about the internals of operating systems
•  Make it easier to understand why processes run the

way they do, and how to optimize systems
•  More info at

people.cs.pitt.edu/~mosse/courses/cs1550/
•  TA: Henrique Potter (hep37@cs.pitt.edu)

Spring 2018 2

What is an Operating System?
A program that acts as an intermediary between a user

of a computer and the computer hardware

3

What does an OS do?
•  Manages (controls and arbitrates) resources

•  Processors, Memory, Input/output devices, Communication
devices, Storage, Software applications

•  Conflicting goals:
•  Performance vs. utilization

•  Provides abstractions to application programs
•  Ease of use
•  Virtualization

•  The one program running at all times on the computer is
the OS kernel.
•  Everything else is either

•  a system program (ships with the operating system) , or
•  an application program.

4

How to start everything?
bootstrap program is loaded at power-up or reboot
•  Typically stored in ROM or EPROM, generally known

as firmware
•  Initializes all aspects of system
•  Loads operating system kernel and starts execution

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 5

What does the OS manage?
I/O devices

6

I/O Devices
•  I/O devices and the CPU can execute concurrently

•  Device controller
•  in charge of a particular device type

•  has a local buffer

•  CPU moves data from/to main memory to/from local
buffers

•  I/O is from the device to local buffer of controller

•  Device controller informs CPU that it has finished its
operation by causing an interrupt

•  Device Driver for each device controller
•  Provides uniform interface between controller and kernel

Interrupts
•  Interrupt transfers control to the interrupt service

routine (ISR)
•  ISRs are segments of code determine what action

should be taken for each type of interrupt
•  The interrupt vector contains the addresses of all

the service routines

•  A trap or exception is a software-generated interrupt
caused either by an error or a user request

Storage Devices
•  Let’s look at a particular type of I/O devices: storage

devices
•  Storage systems organized
in hierarchy with several
trade-offs

•  Speed
•  Cost
•  Volatility
•  Reliability
•  etc

9

OS and Computer System Architecture
•  single general-purpose processor

•  special-purpose processors as well

 Multiprocessors

10

computer
interconnect

computer
interconnect

computer

storage area
network

Multi-core

Clustered

OS and Computing Environments
•  Traditional

•  Stand-alone general purpose machines
•  Massively and ubiquitously networked

•  Mobile
•  smartphones, tablets, etc.
•  more OS features (GPS, sensors)

11

Computing Environments - Virtualization

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

12

Operating-System Operations
Interrupt driven (hardware and software)

Hardware interrupt by one of the devices
Software interrupt (exception or trap):

Request for operating system service
Software error (e.g., division by zero)
Other process problems include infinite loop, processes trying to

modify each other or the operating system

13

Operating-System Operations (cont.)
•  Dual-mode operation allows OS to protect itself and

other system components
•  User mode and kernel mode
•  Mode bit provided by hardware

•  Provides ability to distinguish when system is running user code
or kernel code

•  Some instructions designated as privileged, only executable in
kernel mode

•  System call changes mode to kernel, return from call resets it to
user

•  Increasingly CPUs support multi-mode operations
•  virtual machine manager (VMM) mode for guest VMs

14

Transition from User to Kernel Mode
Timer to prevent infinite loop / process hogging

resources
Timer is set to interrupt the computer after some time period
Operating system set the counter (privileged instruction)
When counter zero generate an interrupt

15

Process Management
•  A process is a program in execution. It is a unit of

work within the system. Program is a passive entity,
process is an active entity.

•  Process needs resources to accomplish its task
•  CPU, memory, I/O, files
•  Initialization data

•  Process termination requires reclaim of any reusable
resources

•  Single-threaded process has one program counter
specifying location of next instruction to execute
•  Process executes instructions sequentially, one at a time,

until completion

16

Memory Management
•  To execute a program all (or part) of the instructions

must be in memory
•  All (or part) of the data that is needed by the

program must be in memory.

•  Memory management determines what is in memory
and when

•  Memory management activities
•  Keeping track of which parts of memory are currently

being used and by whom
•  Deciding which processes (or parts thereof) and data to

move into and out of memory
•  Allocating and deallocating memory space as needed

17

Storage Management
•  OS provides uniform, logical view of information

storage
•  Abstracts physical properties to logical storage unit - file

•  File-System management
•  Files usually organized into directories
•  Access control on most systems to determine who can

access what
•  OS activities include

•  Creating and deleting files and directories
•  Primitives to manipulate files and directories
•  Mapping files onto secondary storage
•  Backup files onto stable (non-volatile) storage media

18

A View of Operating System Services

19

System Calls
•  Programming interface to the services provided by

the OS

•  Typically written in a high-level language (C or C++)

•  Mostly accessed by programs via a high-level
Application Programming Interface (API) rather
than direct system call use

•  Three most common APIs are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual
machine (JVM)

20

Example of System Calls
System call sequence to copy the contents of one file to

another file

21

System Call Implementation
•  Typically, a number associated with each system call

•  System-call interface maintains a table indexed
according to these numbers

•  The system call interface invokes the intended
system call in OS kernel and returns status of the
system call and any return values

•  The caller need know nothing about how the system
call is implemented

22

API – System Call – OS Relationship

23

System Call Parameter Passing
•  Three general methods used to pass parameters to

the OS
•  Simplest: pass the parameters in registers

•  In some cases, may be more parameters than registers
•  Parameters stored in a block, or table, in memory, and

address of block passed as a parameter in a register
•  This approach taken by Linux and Solaris

•  Parameters placed, or pushed, onto the stack by the
program and popped off the stack by the operating
system

•  Block and stack methods do not limit the number or
length of parameters being passed

24

Parameter Passing via Table

25

Types of System Calls
•  Process control

•  create process, terminate process
•  end, abort
•  load, execute
•  get process attributes, set process attributes
•  wait for time
•  wait event, signal event
•  allocate and free memory
•  Dump memory if error
•  Debugger for determining bugs, single step execution
•  Locks for managing access to shared data between

processes
26

Types of System Calls
•  File management

•  create file, delete file
•  open, close file
•  read, write, reposition
•  get and set file attributes

•  Device management
•  request device, release device
•  read, write, reposition
•  get device attributes, set device attributes
•  logically attach or detach devices

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 27

Types of System Calls (Cont.)
•  Communications

•  create, delete communication connection
•  send, receive messages if message passing model to

host name or process name
•  From client to server

•  Shared-memory model create and gain access to
memory regions

•  transfer status information
•  attach and detach remote devices

28

Types of System Calls (Cont.)
•  Protection

•  Control access to resources
•  Get and set permissions
•  Allow and deny user access

29

Examples of Windows and Unix System Calls

30

Standard C Library Example
C program invoking printf() library call, which calls

write() system call

31

Operating System Design and Implementation

•  Important principle to separate
•  Policy: What will be done?

Mechanism: How to do it?
•  Mechanisms determine how to do something,

policies decide what will be done
•  The separation of policy from mechanism is a very

important principle, it allows maximum flexibility if
policy decisions are to be changed later (example –
timer)

•  Specifying and designing an OS is highly creative
task of software engineering

Operating System Structure
General-purpose OS is very large program
Various ways to structure OSs

Simple structure – MS-DOS
More complex – UNIX
Layered – an abstraction
Microkernel – Mach

33

Traditional UNIX System Structure
Beyond simple but not fully layered

34

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

35

