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Course Goal 
•  Learn about the internals of operating systems 
•  Make it easier to understand why processes run the 

way they do, and how to optimize systems 
•  More info at  

people.cs.pitt.edu/~mosse/courses/cs1550/ 
•  TA: Henrique Potter (hep37@cs.pitt.edu) 
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What is an Operating System? 
A program that acts as an intermediary between a user 

of a computer and the computer hardware 
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What does an OS do? 
•  Manages (controls and arbitrates) resources 

•  Processors, Memory, Input/output devices, Communication 
devices, Storage, Software applications 

•  Conflicting goals:  
•  Performance vs. utilization 

•  Provides abstractions to application programs 
•  Ease of use 
•  Virtualization 

•  The one program running at all times on the computer is 
the OS kernel.   
•  Everything else is either 

•  a system program (ships with the operating system) , or 
•  an application program. 
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How to start everything? 
bootstrap program is loaded at power-up or reboot 
•  Typically stored in ROM or EPROM, generally known 

as firmware 
•  Initializes all aspects of system 
•  Loads operating system kernel and starts execution 
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What does the OS manage? 
I/O devices 
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I/O Devices 
•  I/O devices and the CPU can execute concurrently 

•  Device controller  
•  in charge of a particular device type 

•  has a local buffer 

•  CPU moves data from/to main memory to/from local 
buffers 

•  I/O is from the device to local buffer of controller 

•  Device controller informs CPU that it has finished its 
operation by causing an interrupt 

•  Device Driver for each device controller  
•  Provides uniform interface between controller and kernel 



Interrupts 
•  Interrupt transfers control to the interrupt service 

routine (ISR) 
•  ISRs are segments of code determine what action 

should be taken for each type of interrupt 
•  The interrupt vector contains the addresses of all 

the service routines 

•  A trap or exception is a software-generated interrupt 
caused either by an error or a user request 



Storage Devices 
•  Let’s look at a particular type of I/O devices: storage 

devices 
•  Storage systems organized  
in hierarchy with several 
trade-offs 

•  Speed 
•  Cost 
•  Volatility 
•  Reliability 
•  etc 
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OS and Computer System Architecture 
•  single general-purpose processor 

•  special-purpose processors as well 

  Multiprocessors       
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OS and Computing Environments 
•  Traditional 

•  Stand-alone general purpose machines 
•  Massively and ubiquitously networked 

•  Mobile 
•  smartphones, tablets, etc. 
•  more OS features (GPS, sensors) 
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Computing Environments - Virtualization 
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Operating-System Operations 
Interrupt driven (hardware and software) 

Hardware interrupt by one of the devices  
Software interrupt (exception or trap): 

Request for operating system service 
Software error (e.g., division by zero) 
Other process problems include infinite loop, processes trying to 

modify each other or the operating system 
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Operating-System Operations (cont.) 
•  Dual-mode operation allows OS to protect itself and 

other system components 
•  User mode and kernel mode  
•  Mode bit provided by hardware 

•  Provides ability to distinguish when system is running user code 
or kernel code 

•  Some instructions designated as privileged, only executable in 
kernel mode 

•  System call changes mode to kernel, return from call resets it to 
user 

•  Increasingly CPUs support multi-mode operations 
•  virtual machine manager (VMM) mode for guest VMs 
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Transition from User to Kernel Mode 
Timer to prevent infinite loop / process hogging 

resources 
Timer is set to interrupt the computer after some time period 
Operating system set the counter (privileged instruction) 
When counter zero generate an interrupt 
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Process Management 
•  A process is a program in execution. It is a unit of 

work within the system. Program is a passive entity, 
process is an active entity. 

•  Process needs resources to accomplish its task 
•  CPU, memory, I/O, files 
•  Initialization data 

•  Process termination requires reclaim of any reusable 
resources 

•  Single-threaded process has one program counter 
specifying location of next instruction to execute 
•  Process executes instructions sequentially, one at a time, 

until completion 
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Memory Management 
•  To execute a program all (or part) of the instructions 

must be in memory 
•  All  (or part) of the data that is needed by the 

program must be in memory. 

•  Memory management determines what is in memory 
and when 

•  Memory management activities 
•  Keeping track of which parts of memory are currently 

being used and by whom 
•  Deciding which processes (or parts thereof) and data to 

move into and out of memory 
•  Allocating and deallocating memory space as needed 
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Storage Management 
•  OS provides uniform, logical view of information 

storage 
•  Abstracts physical properties to logical storage unit  - file 

•  File-System management 
•  Files usually organized into directories 
•  Access control on most systems to determine who can 

access what 
•  OS activities include 

•  Creating and deleting files and directories 
•  Primitives to manipulate files and directories 
•  Mapping files onto secondary storage 
•  Backup files onto stable (non-volatile) storage media 
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A View of Operating System Services 
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System Calls 
•  Programming interface to the services provided by 

the OS 

•  Typically written in a high-level language (C or C++) 

•  Mostly accessed by programs via a high-level 
Application Programming Interface (API) rather 
than direct system call use 

•  Three most common APIs are Win32 API for 
Windows, POSIX API for POSIX-based systems 
(including virtually all versions of UNIX, Linux, and 
Mac OS X), and Java API for the Java virtual 
machine (JVM) 
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Example of System Calls 
System call sequence to copy the contents of one file to 

another file 
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System Call Implementation 
•  Typically, a number associated with each system call 

•  System-call interface maintains a table indexed 
according to these numbers 

•  The system call interface invokes  the intended 
system call in OS kernel and returns status of the 
system call and any return values 

•  The caller need know nothing about how the system 
call is implemented 
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API – System Call – OS Relationship 
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System Call Parameter Passing 
•  Three general methods used to pass parameters to 

the OS 
•  Simplest:  pass the parameters in registers 

•   In some cases, may be more parameters than registers 
•  Parameters stored in a block, or table, in memory, and 

address of block passed as a parameter in a register  
•  This approach taken by Linux and Solaris 

•  Parameters placed, or pushed, onto the stack by the 
program and popped off the stack by the operating 
system 

•  Block and stack methods do not limit the number or 
length of parameters being passed 
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Parameter Passing via Table 
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Types of System Calls 
•  Process control 

•  create process, terminate process 
•  end, abort 
•  load, execute 
•  get process attributes, set process attributes 
•  wait for time 
•  wait event, signal event 
•  allocate and free memory 
•  Dump memory if error 
•  Debugger for determining bugs, single step execution 
•  Locks for managing access to shared data between 

processes 
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Types of System Calls 
•  File management 

•  create file, delete file 
•  open, close file 
•  read, write, reposition 
•  get and set file attributes 

•  Device management 
•  request device, release device 
•  read, write, reposition 
•  get device attributes, set device attributes 
•  logically attach or detach devices 
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Types of System Calls (Cont.) 
•  Communications 

•  create, delete communication connection 
•  send, receive messages if message passing model to 

host name or process name 
•  From client to server 

•  Shared-memory model create and gain access to 
memory regions 

•  transfer status information 
•  attach and detach remote devices 
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Types of System Calls (Cont.) 
•  Protection 

•  Control access to resources 
•  Get and set permissions 
•  Allow and deny user access 
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Examples of Windows and  Unix System Calls 
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Standard C Library Example 
C program invoking printf() library call, which calls 

write() system call 
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Operating System Design and Implementation 

•  Important principle to separate 
•   Policy:   What will be done?  

Mechanism:  How to do it? 
•  Mechanisms determine how to do something, 

policies decide what will be done 
•  The separation of policy from mechanism is a very 

important principle, it allows maximum flexibility if 
policy decisions are to be changed later (example – 
timer) 

•  Specifying and designing an OS is highly creative 
task of software engineering 



Operating System Structure 
General-purpose OS is very large program 
Various ways to structure OSs 

Simple structure – MS-DOS 
More complex – UNIX  
Layered – an abstraction 
Microkernel – Mach  
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Traditional UNIX System Structure 
Beyond simple but not fully layered 
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Microkernel System Structure  
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