
Chapter 2

Chapter 2: Processes & Threads

Chapter 2 2CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Processes and threads

n Processes
n Threads
n Scheduling
n Interprocess communication
n Classical IPC problems

Chapter 2 3CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

What is a process?

n Code, data, and stack
n Usually (but not always) has its own address space

n Program state
n CPU registers
n Program counter (current location in the code)
n Stack pointer

n Only one process can be running in the CPU at any
given time!

Chapter 2 4CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

The process model
n Multiprogramming of four

programs
n Conceptual model

n 4 independent processes
n Processes run sequentially

n Only one program active at any
instant!
n That instant can be very short…

A

C

D

Single PC
(CPU’s point of view)

A
B C D

Multiple PCs
(process point of view)

B

B

A
B
C
D

Time

Chapter 2 5CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

When is a process created?

n Processes can be created in two ways
n System initialization: one or more processes created when

the OS starts up
n Execution of a process creation system call: something

explicitly asks for a new process
n System calls can come from

n User request to create a new process (system call executed
from user shell)

n Already running processes
n User programs
n System daemons

Process Creation

n Parent process creates children processes, which, in
turn create other processes, forming a tree of
processes

n Generally, process identified and managed via a
process identifier (pid)

n Resource sharing options
n Parent and children share all resources
n Children share subset of parent�s resources
n Parent and child share no resources

n Execution options
n Parent and children execute concurrently
n Parent waits until children terminate

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab6

Process Creation (Cont.)

n Address space
n Child duplicate of parent
n Child has a program loaded into it

n UNIX examples
n fork() system call creates new process
n exec() system call used after a fork() to replace the

process� memory space with a new program

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab7

Chapter 2 8CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

When do processes end?

n Conditions that terminate processes can be
n Voluntary
n Involuntary

n Voluntary
n Normal exit
n Error exit

n Involuntary
n Fatal error (only sort of involuntary)
n Killed by another process

Process Termination

n Process executes last statement and then asks the
operating system to delete it using the exit()
system call.
n Returns status data from child to parent (via wait())
n Process� resources are deallocated by operating system

n Parent may terminate the execution of children
processes using the abort() system call. Some
reasons for doing so:
n Child has exceeded allocated resources
n Task assigned to child is no longer required
n The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates
Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab9

Process Termination

n Some operating systems do not allow a child to exist if its
parent has terminated. If a process terminates, then all its
children must also be terminated.
n cascading termination. All children, grandchildren, etc. are

terminated.
n The termination is initiated by the operating system.

n The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);
n If no parent waiting (did not invoke wait()) process is a

zombie
n If parent terminated without invoking wait , process is an

orphan

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab10

Chapter 2 11CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Process hierarchies

n Parent creates a child process
n Child processes can create their own children

n Forms a hierarchy
n UNIX calls this a “process group”
n If a process exits, its children are “inherited” by the

exiting process’s parent
n Windows has no concept of process hierarchy

n All processes are created equal

Chapter 2 12CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Blocked
(waiting)

Created

Exit

Ready

Running

Process states
n Process in one of 5 states

n Created
n Ready
n Running
n Blocked
n Exit

n Transitions between states
1 - Process enters ready queue
2 - Scheduler picks this process
3 - Scheduler picks a different

process
4 - Process waits for event (such as

I/O)
5 - Event occurs
6 - Process exits
7 - Process ended by another

process

1

5

4

3

2

7
7 6

Chapter 2 13CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Processes in the OS

n Two “layers” for processes
n Lowest layer of process-structured OS handles interrupts,

scheduling
n Above that layer are sequential processes

n Processes tracked in the process table
n Each process has a process table entry

Scheduler

0 1 N-2 N-1…

Processes

Chapter 2 14CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

What’s in a process table entry?

File management
Root directory
Working (current) directory
File descriptors
User ID
Group ID

Memory management
Pointers to text, data, stack

or
Pointer to page table

Process management
Registers
Program counter
CPU status word
Stack pointer
Process state
Priority / scheduling parameters
Process ID
Parent process ID
Signals
Process start time
Total CPU usage

May be
stored

on stack

Chapter 2 15CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

What happens on a trap/interrupt?

1. Hardware saves program counter (on stack or in a
special register)

2. Hardware loads new PC, identifies interrupt
3. Assembly language routine saves registers
4. Assembly language routine sets up stack
5. Assembly language calls C to run service routine
6. Service routine calls scheduler
7. Scheduler selects a process to run next (might be

the one interrupted…)
8. Assembly language routine loads PC & registers

for the selected process

Chapter 2 16CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Threads: “processes” sharing memory

n Process == address space
n Thread == program counter / stream of instructions
n Two examples

n Three processes, each with one thread
n One process with three threads

Kernel Kernel
ThreadsThreads

System
space

User
space

Process 1 Process 2 Process 3 Process 1

Chapter 2 17CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Process & thread information

Per process items
Address space
Open files
Child processes
Signals & handlers
Accounting info
Global variables

Per thread items
Program counter
Registers
Stack & stack pointer
State

Per thread items
Program counter
Registers
Stack & stack pointer
State

Per thread items
Program counter
Registers
Stack & stack pointer
State

Chapter 2 18CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Threads & Stacks

Kernel

Process

Thread 1 Thread 2 Thread 3

Thread 1’s
stack

Thread 3’s
stack

Thread 2’s
stack

User space

=> Each thread has its own stack!

Chapter 2 19CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Why use threads?
n Allow a single application

to do many things at once
n Simpler programming model
n Less waiting

n Threads are faster to create
or destroy
n No separate address space

n Overlap computation and
I/O
n Could be done without

threads, but it’s harder
n Example: word processor

n Thread to read from keyboard
n Thread to format document
n Thread to write to disk

Kernel

When in the Course of human events, it
becomes necessary for one people to
dissolve the political bands which have
connected them with another, and to
assume among the powers of the earth,
the separate and equal station to which
the Laws of Nature and of Nature's God
entitle them, a decent respect to the
opinions of mankind requires that they
should declare the causes which impel
them to the separation.

We hold these truths to be self-evident,
that all men are created equal, that they
are endowed by their Creator with
certain unalienable Rights, that among
these are Life, Liberty and the pursuit of
Happiness.--That to secure these rights,
Governments are instituted among Men,
deriving their just powers from the
consent of the governed, --That
whenever any Form of Government
becomes

destructive of these ends, it is the Right
of the People to alter or to abolish it,
and to institute new Government, laying
its foundation on such principles and
organizing its powers in such form, as to
them shall seem most likely to effect
their Safety and Happiness. Prudence,
indeed, will dictate that Governments
long established should not be changed
for light and transient causes; and
accordingly all

Chapter 2 20CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Multithreaded Web server

Kernel

Network
connection

Dispatcher
thread

Worker
thread

Web page
cache

while(TRUE) {
getNextRequest(&buf);
handoffWork(&buf);

}

while(TRUE) {
waitForWork(&buf);
lookForPageInCache(&buf,&page);
if(pageNotInCache(&page)) {

readPageFromDisk(&buf,&page);
}
returnPage(&page);

}

Chapter 2 21CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Three ways to build a server

n Thread model
n Parallelism
n Blocking system calls

n Single-threaded process: slow, but easier to do
n No parallelism
n Blocking system calls

n Finite-state machine
n Each activity has its own state
n States change when system calls complete or interrupts

occur
n Parallelism
n Nonblocking system calls
n Interrupts

Chapter 2 22CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Implementing threads

Kernel

Run-time
system

Thread
table

Process
table

Kernel

Thread

Process

Thread
table

Process
table

User-level threads
+ No need for kernel support
- May be slower than kernel threads
- Harder to do non-blocking I/O

Kernel-level threads
+ More flexible scheduling
+ Non-blocking I/O
- Not portable

Interprocess Communication
n Processes within a system may be independent or
cooperating

n Cooperating process can affect or be affected by other
processes, including sharing data

n Reasons for cooperating processes:
n Information sharing
n Computation speedup
n Modularity
n Convenience

n Cooperating processes need interprocess communication
(IPC)

n Two models of IPC
n Shared memory
n Message passing

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab23

Producer-Consumer Problem

n Paradigm for cooperating processes, producer
process produces information that is consumed by a
consumer process

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab24

Bounded-Buffer – Shared-Memory
Solution

n Shared data
n #define BUFFER_SIZE 10
n typedef struct {
n . . .
n } item;

n item buffer[BUFFER_SIZE];
n int in = 0;
n int out = 0;

n Solution is correct, but can only use BUFFER_SIZE-
1 elements

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab25

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) ==

out)
; /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

} Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab26

Bounded Buffer – Consumer

item next_consumed;
while (true) {

while (in == out)
; /* do nothing */

next_consumed = buffer[out];
out = (out + 1) %

BUFFER_SIZE;

/* consume the item in next
consumed */
}

Spring 2018

CS/
CO

E
155
0 –

Ope
rati
ng

Syst
ems

–
She

rif
Kha
ttab27

Chapter 2 28CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Scheduling

n What is scheduling?
n Goals
n Mechanisms

n Scheduling on batch systems
n Scheduling on interactive systems
n Other kinds of scheduling

n Real-time scheduling

Chapter 2 29CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Why schedule processes?

n Bursts of CPU usage alternate with periods of I/O wait
n Some processes are CPU-bound: they don’t make many I/O

requests
n Other processes are I/O-bound and make many kernel

requests

CPU bound

I/O bound

CPU bursts I/O waits

Total CPU usage

Total CPU usage

Time

Chapter 2 30CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

When are processes scheduled?

n At the time they enter the system
n Common in batch systems
n Two types of batch scheduling

n Submission of a new job causes the scheduler to run
n Scheduling only done when a job voluntarily gives up the CPU

(i.e., while waiting for an I/O request)

n At relatively fixed intervals (clock interrupts)
n Necessary for interactive systems
n May also be used for batch systems
n Scheduling algorithms at each interrupt, and picks the next

process from the pool of “ready” processes

Chapter 2 31CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Scheduling goals
n All systems

n Fairness: give each process a fair share of the CPU
n Enforcement: ensure that the stated policy is carried out
n Balance: keep all parts of the system busy

n Batch systems
n Throughput: maximize jobs per unit time (hour)
n Turnaround time: minimize time users wait for jobs
n CPU utilization: keep the CPU as busy as possible

n Interactive systems
n Response time: respond quickly to users’ requests
n Proportionality: meet users’ expectations

n Real-time systems
n Meet deadlines: missing deadlines is a system failure!
n Predictability: same type of behavior for each time slice

Chapter 2 32CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Measuring scheduling performance

n Throughput
n Amount of work completed per second (minute, hour)
n Higher throughput usually means better utilized system

n Response time
n Response time is time from when a command is submitted until results

are returned
n Can measure average, variance, minimum, maximum, …
n May be more useful to measure time spent waiting

n Turnaround time
n Like response time, but for batch jobs (response is the completion of

the process)
n Usually not possible to optimize for all metrics with the same

scheduling algorithm

Chapter 2 33CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

First Come, First Served (FCFS)

n Goal: do jobs in the order
they arrive
n Fair in the same way a bank

teller line is fair
n Simple algorithm!
n Problem: long jobs delay

every job after them
n Many processes may wait for

a single long job

A B C D

4 3 6 3

Current job queue

Execution order

FCFS scheduler

A B C D

4 3 6 3

Chapter 2 34CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Shortest Job First (SJF)
n Goal: do the shortest job

first
n Short jobs complete first
n Long jobs delay every job

after them
n Jobs sorted in increasing

order of execution time
n Ordering of ties doesn’t

matter
n Shortest Remaining Time

First (SRTF): preemptive
form of SJF

n Problem: how does the
scheduler know how long a
job will take?

A B C D

4 3 6 3

AB CD

43 63

Current job queue

Execution order

SJF scheduler

Chapter 2 35CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Three-level scheduling
CPU

Main
memory

CPU scheduler

Memory
scheduler

Admission
scheduler

Input
queue

Arriving
jobs

n Jobs held in input queue until moved into memory
n Pick “complementary jobs”: small & large, CPU- & I/O-intensive
n Jobs move into memory when admitted

n CPU scheduler picks next job to run
n Memory scheduler picks some jobs from main memory and

moves them to disk if insufficient memory space

Chapter 2 36CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Round Robin (RR) scheduling

n Round Robin scheduling
n Give each process a fixed

time slot (quantum)
n Rotate through “ready”

processes
n Each process makes some

progress
n What’s a good quantum?

n Too short: many process
switches hurt efficiency

n Too long: poor response to
interactive requests

n Typical length: 10–50 ms

A B C D E

Time

A
B
C
D
E

Chapter 2 37CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Priority scheduling
n Assign a priority to each process

n “Ready” process with highest
priority allowed to run

n Running process may be
interrupted after its quantum
expires

n Priorities may be assigned
dynamically
n Reduced when a process uses

CPU time
n Increased when a process waits

for I/O
n Often, processes grouped into

multiple queues based on priority,
and run round-robin per queue

Priority 4

Priority 3

Priority 2

Priority 1

High

Low

“Ready” processes

Chapter 2 38CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Shortest process next

n Run the process that will finish the soonest
n In interactive systems, job completion time is unknown!

n Guess at completion time based on previous runs
n Update estimate each time the job is run
n Estimate is a combination of previous estimate and most

recent run time
n Not often used because round robin with priority

works so well!

Chapter 2 39CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Lottery scheduling

n Give processes “tickets” for CPU time
n More tickets => higher share of CPU

n Each quantum, pick a ticket at random
n If there are n tickets, pick a number from 1 to n
n Process holding the ticket gets to run for a quantum

n Over the long run, each process gets the CPU m/n of
the time if the process has m of the n existing tickets

n Tickets can be transferred
n Cooperating processes can exchange tickets
n Clients can transfer tickets to server so it can have a higher

priority

Chapter 2 40CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Policy versus mechanism

n Separate what may be done from how it is done
n Mechanism allows

n Priorities to be assigned to processes
n CPU to select processes with high priorities

n Policy set by what priorities are assigned to processes
n Scheduling algorithm parameterized

n Mechanism in the kernel
n Priorities assigned in the kernel or by users

n Parameters may be set by user processes
n Don’t allow a user process to take over the system!
n Allow a user process to voluntarily lower its own priority
n Allow a user process to assign priority to its threads

Chapter 2 41CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Scheduling user-level threads

Kernel

Run-time
system

Thread
table

Process
table

n Kernel picks a process to
run next

n Run-time system (at user
level) schedules threads
n Run each thread for less than

process quantum
n Example: processes get 40ms

each, threads get 10ms each
n Example schedule:

A1,A2,A3,A1,B1,B3,B2,B3
n Not possible:

A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Chapter 2 42CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A.

Scheduling kernel-level threads

n Kernel schedules each
thread
n No restrictions on ordering
n May be more difficult for

each process to specify
priorities

n Example schedule:
A1,A2,A3,A1,B1,B3,B2,B3

n Also possible:
A1,A2,B1,B2,A3,B3,A2,B1

Process A Process B

Kernel

Thread
table

Process
table

