
Chapter 4: Memory Management

Part 1: Mechanisms for Managing Memory
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Memory management

n Basic memory management
n Swapping
n Virtual memory
n Page replacement algorithms
n Modeling page replacement algorithms
n Design issues for paging systems
n Implementation issues
n Segmentation
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In an ideal world…

n The ideal world has memory that is
n Very large
n Very fast
n Non-volatile (doesn’t go away when power is turned off)

n The real world has memory that is:
n Very large
n Very fast
n Affordable!
ÞPick any two…

n Memory management goal: make the real world look 
as much like the ideal world as possible
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Memory hierarchy

n What is the memory hierarchy?
n Different levels of memory
n Some are small & fast
n Others are large & slow

n What levels are usually included?
n Cache: small amount of fast, expensive memory

n L1 (level 1) cache: usually on the CPU chip
n L2 & L3 cache: off-chip, made of SRAM

n Main memory: medium-speed, medium price memory (DRAM)
n Disk: many gigabytes of slow, cheap, non-volatile storage

n Memory manager handles the memory hierarchy
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Basic memory management

n Components include
n Operating system (perhaps with device drivers)
n Single process

n Goal: lay these out in memory
n Memory protection may not be an issue (only one program)
n Flexibility may still be useful (allow OS changes, etc.)

n No swapping or paging
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Fixed partitions: multiple programs

n Fixed memory partitions
n Divide memory into fixed spaces
n Assign a process to a space when it’s free

n Mechanisms
n Separate input queues for each partition
n Single input queue: better ability to optimize CPU usage
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How many programs is enough?

n Several memory partitions (fixed or variable size)
n Lots of processes wanting to use the CPU
n Tradeoff

n More processes utilize the CPU better
n Fewer processes use less memory (cheaper!)

n How many processes do we need to keep the CPU 
fully utilized?
n This will help determine how much memory we need
n Is this still relevant with memory costing less than $1/GB?
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Modeling multiprogramming

n More I/O wait means less 
processor utilization
n At 20% I/O wait, 3–4 

processes fully utilize CPU
n At 80% I/O wait, even 10 

processes aren’t enough
n This means that the OS 

should have more 
processes if they’re I/O 
bound

n More processes => 
memory management & 
protection more 
important!
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Multiprogrammed system performance

n Arrival and work requirements of 4 jobs
n CPU utilization for 1–4 jobs with 80% I/O wait
n Sequence of events as jobs arrive and finish

n Numbers show amount of CPU time jobs get in each interval
n More processes => better utilization, less time per process

Job Arrival
time

CPU
needed
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3 10:15 2
4 10:20 2

1 2 3 4
CPU idle 0.80 0.64 0.51 0.41
CPU busy 0.20 0.36 0.49 0.59

CPU/process 0.20 0.18 0.16 0.15

0 10 15 20 22 27.6 28.2 31.7
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Memory and multiprogramming

n Memory needs two things for multiprogramming
n Relocation
n Protection

n The OS cannot be certain where a program will be 
loaded in memory
n Variables and procedures can’t use absolute locations in 

memory
n Several ways to guarantee this

n The OS must keep processes’ memory separate
n Protect a process from other processes reading or 

modifying its own memory
n Protect a process from modifying its own memory in 

undesirable ways (such as writing to program code)
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Base and limit registers

n Special CPU registers: base & 
limit
n Access to the registers limited to 

system mode
n Registers contain

n Base: start of the process’s 
memory partition

n Limit: length of the process’s 
memory partition

n Address generation
n Physical address: location in 

actual memory
n Logical address: location from 

the process’s point of view
n Physical address = base + logical 

address
n Logical address larger than limit 

=> error

Process
partition

OS
0

0xFFFF

Limit

Base

0x2000

0x9000

Logical address: 0x1204
Physical address:
0x1204+0x9000 = 0xa204



Chapter 4 12CS 1550, cs.pitt.edu 
(originaly modified by Ethan 
L. Miller and Scott A. Brandt)

Swapping

n Memory allocation changes as 
n Processes come into memory
n Processes leave memory

n Swapped to disk
n Complete execution

n Gray regions are unused memory
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Swapping: leaving room to grow

n Need to allow for programs 
to grow
n Allocate more memory for 

data
n Larger stack

n Handled by allocating more 
space than is necessary at 
the start
n Inefficient: wastes memory 

that’s not currently in use
n What if the process requests 

too much memory?
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Tracking memory usage: bitmaps

n Keep track of free / allocated memory regions with a bitmap
n One bit in map corresponds to a fixed-size region of memory
n Bitmap is a constant size for a given amount of memory regardless of how 

much is allocated at a particular time
n Chunk size determines efficiency

n At 1 bit per 4KB chunk, we need just 256 bits (32 bytes) per MB of memory
n For smaller chunks, we need more memory for the bitmap
n Can be difficult to find large contiguous free areas in bitmap
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Tracking memory usage: linked lists

n Keep track of free / allocated memory regions with a linked list
n Each entry in the list corresponds to a contiguous region of memory
n Entry can indicate either allocated or free (and, optionally, owning process)
n May have separate lists for free and allocated areas

n Efficient if chunks are large
n Fixed-size representation for each region
n More regions => more space needed for free lists
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Allocating memory

n Search through region list to find a large enough space
n Suppose there are several choices: which one to use?

n First fit: the first suitable hole on the list
n Next fit: the first suitable after the previously allocated hole
n Best fit: the smallest hole that is larger than the desired region (wastes least 

space?)
n Worst fit: the largest available hole (leaves largest fragment)

n Option: maintain separate queues for different-size holes
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- 202 10 - 302 20 - 350 30 - 411 19 - 510 3

Allocate 20 blocks first fit

5

Allocate 12 blocks next fit

18

Allocate 13 blocks best fit

1

Allocate 15 blocks worst fit

15
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Freeing memory

n Allocation structures must be updated when memory is freed
n Easy with bitmaps: just set the appropriate bits in the bitmap
n Linked lists: modify adjacent elements as needed

n Merge adjacent free regions into a single region
n May involve merging two regions with the just-freed area
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Limitations of swapping

n Problems with swapping
n Process must fit into physical memory (impossible to run 

larger processes)
n Memory becomes fragmented

n External fragmentation: lots of small free areas
n Compaction needed to reassemble larger free areas

n Processes are either in memory or on disk: half and half 
doesn’t do any good

n Overlays solved the first problem
n Bring in pieces of the process over time (typically data)
n Still doesn’t solve the problem of fragmentation or 

partially resident processes
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Virtual memory

n Basic idea: allow the OS to hand out more memory 
than exists on the system

n Keep recently used stuff in physical memory
n Move less recently used stuff to disk
n Keep all of this hidden from processes

n Processes still see an address space from 0 – max address
n Movement of information to and from disk handled by the 

OS without process help
n Virtual memory (VM) especially helpful in 

multiprogrammed system
n CPU schedules process B while process A waits for its 

memory to be retrieved from disk
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Virtual and physical addresses

n Program uses virtual 
addresses
n Addresses local to the process
n Hardware translates virtual 

address to physical address
n Translation done by the 
Memory Management Unit
n Usually on the same chip as 

the CPU
n Only physical addresses leave 

the CPU/MMU chip
n Physical memory indexed 

by physical addresses

CPU chip
CPU

Memory

Disk
controller

MMU

Virtual addresses
from CPU to MMU

Physical addresses
on bus, in memory
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0–4K
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Paging and page tables

n Virtual addresses mapped to 
physical addresses
n Unit of mapping is called a page
n All addresses in the same virtual 

page are in the same physical 
page

n Page table entry (PTE) contains 
translation for a single page

n Table translates virtual page 
number to physical page number
n Not all virtual memory has a 

physical page
n Not every physical page need be 

used
n Example:

n 64 KB virtual memory
n 32 KB physical memory
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What’s in a page table entry?

n Each entry in the page table contains
n Valid bit: set if this logical page number has a corresponding physical frame 

in memory
n If not valid, remainder of PTE is irrelevant

n Page frame number: page in physical memory
n Referenced bit: set if data on the page has been accessed
n Dirty (modified) bit :set if data on the page has been modified
n Protection information

Page frame numberVRDProtection

Valid bitReferenced bitDirty bit
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Example:
• 4 KB (=4096 byte) pages
• 32 bit logical addresses

p d

2d = 4096 d = 12

12 bits

32 bit logical address

32-12 = 20 bits

Mapping logical => physical address

n Split address from CPU into 
two pieces
n Page number (p)
n Page offset (d)

n Page number
n Index into page table
n Page table contains base 

address of page in physical 
memory

n Page offset
n Added to base address to get 

actual physical memory 
address

n Page size = 2d bytes
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Two-level page tables

n Problem: page tables can be too 
large
n 232 bytes in 4KB pages need 1 

million PTEs
n Solution: use multi-level page 

tables
n “Page size” in first page table is 

large (megabytes)
n PTE marked invalid in first page 

table needs no 2nd level page 
table

n 1st level page table has pointers 
to 2nd level page tables

n 2nd level page table has actual 
physical page numbers in it



Chapter 4 27CS 1550, cs.pitt.edu 
(originaly modified by Ethan 
L. Miller and Scott A. Brandt)

More on two-level page tables

n Tradeoffs between 1st and 2nd level page table sizes
n Total number of bits indexing 1st and 2nd level table is 

constant for a given page size and logical address length
n Tradeoff between number of bits indexing 1st and number 

indexing 2nd level tables
n More bits in 1st level: fine granularity at 2nd level
n Fewer bits in 1st level: maybe less wasted space?

n All addresses in table are physical addresses
n Protection bits kept in 2nd level table
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p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

Two-level paging: example

n System characteristics
n 8 KB pages
n 32-bit logical address divided into 13 bit page offset, 19 bit page number

n Page number divided into:
n 10 bit page number
n 9 bit page offset

n Logical address looks like this:
n p1 is an index into the 1st level page table
n p2 is an index into the 2nd level page table pointed to by p1
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2-level address translation example
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Implementing page tables in hardware 

n Page table resides in main (physical) memory
n CPU uses special registers for paging

n Page table base register (PTBR) points to the page table
n Page table length register (PTLR) contains length of page table: 

restricts maximum legal logical address
n Translating an address requires two memory accesses

n First access reads page table entry (PTE)
n Second access reads the data / instruction from memory

n Reduce number of memory accesses
n Can’t avoid second access (we need the value from memory)
n Eliminate first access by keeping a hardware cache (called a 

translation lookaside buffer or TLB) of recently used page table 
entries
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Translation Lookaside Buffer (TLB)

n Search the TLB for the desired 
logical page number
n Search entries in parallel
n Use standard cache techniques

n If desired logical page number is 
found, get frame number from 
TLB

n If desired logical page number 
isn’t found
n Get frame number from page 

table in memory
n Replace an entry in the TLB 

with the logical & physical page 
numbers from this reference
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Handling TLB misses

n If PTE isn’t found in TLB, OS needs to do the lookup in the 
page table

n Lookup can be done in hardware or software
n Hardware TLB replacement

n CPU hardware does page table lookup
n Can be faster than software
n Less flexible than software, and more complex hardware

n Software TLB replacement
n OS gets TLB exception
n Exception handler does page table lookup & places the result into the 

TLB
n Program continues after return from exception
n Larger TLB (lower miss rate) can make this feasible
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How long do memory accesses take?

n Assume the following times:
n TLB lookup time = a (often zero - overlapped in CPU)
n Memory access time = m

n Hit ratio (h) is percentage of time that a logical page number 
is found in the TLB
n Larger TLB usually means higher h
n TLB structure can affect h as well

n Effective access time (an average) is calculated as:
n EAT = (m + a)h + (m + m + a)(1-h)
n EAT =a + (2-h)m

n Interpretation
n Reference always requires TLB lookup, 1 memory access
n TLB misses also require an additional memory reference
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Inverted page table

n Reduce page table size further: keep one entry for 
each frame in memory

n PTE contains
n Virtual address pointing to this frame
n Information about the process that owns this page

n Search page table by
n Hashing the virtual page number and process ID
n Starting at the entry corresponding to the hash result
n Search until either the entry is found or a limit is reached

n Page frame number is index of PTE
n Improve performance by using more advanced 

hashing algorithms
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