
Chapter 4: Memory Management

Part 1: Mechanisms for Managing Memory

Chapter 4 2CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Memory management

n Basic memory management
n Swapping
n Virtual memory
n Page replacement algorithms
n Modeling page replacement algorithms
n Design issues for paging systems
n Implementation issues
n Segmentation

Chapter 4 3CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

In an ideal world…

n The ideal world has memory that is
n Very large
n Very fast
n Non-volatile (doesn’t go away when power is turned off)

n The real world has memory that is:
n Very large
n Very fast
n Affordable!
ÞPick any two…

n Memory management goal: make the real world look
as much like the ideal world as possible

Chapter 4 4CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Memory hierarchy

n What is the memory hierarchy?
n Different levels of memory
n Some are small & fast
n Others are large & slow

n What levels are usually included?
n Cache: small amount of fast, expensive memory

n L1 (level 1) cache: usually on the CPU chip
n L2 & L3 cache: off-chip, made of SRAM

n Main memory: medium-speed, medium price memory (DRAM)
n Disk: many gigabytes of slow, cheap, non-volatile storage

n Memory manager handles the memory hierarchy

Chapter 4 5CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Basic memory management

n Components include
n Operating system (perhaps with device drivers)
n Single process

n Goal: lay these out in memory
n Memory protection may not be an issue (only one program)
n Flexibility may still be useful (allow OS changes, etc.)

n No swapping or paging

Operating system
(RAM)

User program
(RAM)

0xFFFF 0xFFFF

0 0

User program
(RAM)

Operating system
(ROM)

Operating system
(RAM)

User program
(RAM)

Device drivers
(ROM)

Chapter 4 6CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Fixed partitions: multiple programs

n Fixed memory partitions
n Divide memory into fixed spaces
n Assign a process to a space when it’s free

n Mechanisms
n Separate input queues for each partition
n Single input queue: better ability to optimize CPU usage

OS

Partition 1

Partition 2
Partition 3

Partition 4

0

100K

500K
600K
700K

900K

OS

Partition 1

Partition 2
Partition 3

Partition 4

0

100K

500K
600K
700K

900K

Chapter 4 7CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

How many programs is enough?

n Several memory partitions (fixed or variable size)
n Lots of processes wanting to use the CPU
n Tradeoff

n More processes utilize the CPU better
n Fewer processes use less memory (cheaper!)

n How many processes do we need to keep the CPU
fully utilized?
n This will help determine how much memory we need
n Is this still relevant with memory costing less than $1/GB?

Chapter 4 8CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Modeling multiprogramming

n More I/O wait means less
processor utilization
n At 20% I/O wait, 3–4

processes fully utilize CPU
n At 80% I/O wait, even 10

processes aren’t enough
n This means that the OS

should have more
processes if they’re I/O
bound

n More processes =>
memory management &
protection more
important!

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Degree of Multiprogramming

C
PU

 U
til

iz
at

io
n

80% I/O Wait 50% I/O Wait 20% I/O Wait

Chapter 4 9CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Multiprogrammed system performance

n Arrival and work requirements of 4 jobs
n CPU utilization for 1–4 jobs with 80% I/O wait
n Sequence of events as jobs arrive and finish

n Numbers show amount of CPU time jobs get in each interval
n More processes => better utilization, less time per process

Job Arrival
time

CPU
needed

1 10:00 4
2 10:10 3
3 10:15 2
4 10:20 2

1 2 3 4
CPU idle 0.80 0.64 0.51 0.41
CPU busy 0.20 0.36 0.49 0.59

CPU/process 0.20 0.18 0.16 0.15

0 10 15 20 22 27.6 28.2 31.7

1
2
3
4

Time

Chapter 4 10CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Memory and multiprogramming

n Memory needs two things for multiprogramming
n Relocation
n Protection

n The OS cannot be certain where a program will be
loaded in memory
n Variables and procedures can’t use absolute locations in

memory
n Several ways to guarantee this

n The OS must keep processes’ memory separate
n Protect a process from other processes reading or

modifying its own memory
n Protect a process from modifying its own memory in

undesirable ways (such as writing to program code)

Chapter 4 11CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Base and limit registers

n Special CPU registers: base &
limit
n Access to the registers limited to

system mode
n Registers contain

n Base: start of the process’s
memory partition

n Limit: length of the process’s
memory partition

n Address generation
n Physical address: location in

actual memory
n Logical address: location from

the process’s point of view
n Physical address = base + logical

address
n Logical address larger than limit

=> error

Process
partition

OS
0

0xFFFF

Limit

Base

0x2000

0x9000

Logical address: 0x1204
Physical address:
0x1204+0x9000 = 0xa204

Chapter 4 12CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Swapping

n Memory allocation changes as
n Processes come into memory
n Processes leave memory

n Swapped to disk
n Complete execution

n Gray regions are unused memory

OS OS OS OS OS OS OS

A A
B

A
B
C

B
C

B
C

D

C

D

C

D
A

Chapter 4 13CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Swapping: leaving room to grow

n Need to allow for programs
to grow
n Allocate more memory for

data
n Larger stack

n Handled by allocating more
space than is necessary at
the start
n Inefficient: wastes memory

that’s not currently in use
n What if the process requests

too much memory?

OS
Code

Data

Stack
Code

Data

Stack

Process
B

Process
A

Room for
B to grow

Room for
A to grow

Chapter 4 14CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Tracking memory usage: bitmaps

n Keep track of free / allocated memory regions with a bitmap
n One bit in map corresponds to a fixed-size region of memory
n Bitmap is a constant size for a given amount of memory regardless of how

much is allocated at a particular time
n Chunk size determines efficiency

n At 1 bit per 4KB chunk, we need just 256 bits (32 bytes) per MB of memory
n For smaller chunks, we need more memory for the bitmap
n Can be difficult to find large contiguous free areas in bitmap

A B C D

11111100
00111000
01111111
11111000

8 16 24 32

Memory regions

Bitmap

Chapter 4 15CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Tracking memory usage: linked lists

n Keep track of free / allocated memory regions with a linked list
n Each entry in the list corresponds to a contiguous region of memory
n Entry can indicate either allocated or free (and, optionally, owning process)
n May have separate lists for free and allocated areas

n Efficient if chunks are large
n Fixed-size representation for each region
n More regions => more space needed for free lists

A B C D

16 24 32
Memory regions

A 0 6 - 6 4 B 10 3 - 13 4 C 17 9

- 29 3D 26 3

8

Chapter 4 16CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Allocating memory

n Search through region list to find a large enough space
n Suppose there are several choices: which one to use?

n First fit: the first suitable hole on the list
n Next fit: the first suitable after the previously allocated hole
n Best fit: the smallest hole that is larger than the desired region (wastes least

space?)
n Worst fit: the largest available hole (leaves largest fragment)

n Option: maintain separate queues for different-size holes

- 6 5 - 19 14 - 52 25 - 102 30 - 135 16

- 202 10 - 302 20 - 350 30 - 411 19 - 510 3

Allocate 20 blocks first fit

5

Allocate 12 blocks next fit

18

Allocate 13 blocks best fit

1

Allocate 15 blocks worst fit

15

Chapter 4 17CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Freeing memory

n Allocation structures must be updated when memory is freed
n Easy with bitmaps: just set the appropriate bits in the bitmap
n Linked lists: modify adjacent elements as needed

n Merge adjacent free regions into a single region
n May involve merging two regions with the just-freed area

A X B

A X

X B

X

A B

A

B

Chapter 4 18CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Limitations of swapping

n Problems with swapping
n Process must fit into physical memory (impossible to run

larger processes)
n Memory becomes fragmented

n External fragmentation: lots of small free areas
n Compaction needed to reassemble larger free areas

n Processes are either in memory or on disk: half and half
doesn’t do any good

n Overlays solved the first problem
n Bring in pieces of the process over time (typically data)
n Still doesn’t solve the problem of fragmentation or

partially resident processes

Chapter 4 19CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Virtual memory

n Basic idea: allow the OS to hand out more memory
than exists on the system

n Keep recently used stuff in physical memory
n Move less recently used stuff to disk
n Keep all of this hidden from processes

n Processes still see an address space from 0 – max address
n Movement of information to and from disk handled by the

OS without process help
n Virtual memory (VM) especially helpful in

multiprogrammed system
n CPU schedules process B while process A waits for its

memory to be retrieved from disk

Chapter 4 20CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Virtual and physical addresses

n Program uses virtual
addresses
n Addresses local to the process
n Hardware translates virtual

address to physical address
n Translation done by the
Memory Management Unit
n Usually on the same chip as

the CPU
n Only physical addresses leave

the CPU/MMU chip
n Physical memory indexed

by physical addresses

CPU chip
CPU

Memory

Disk
controller

MMU

Virtual addresses
from CPU to MMU

Physical addresses
on bus, in memory

Chapter 4 21CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

0–4K
4–8K
8–12K
12–16K
16–20K
20–24K
24–28K
28–32K

Paging and page tables

n Virtual addresses mapped to
physical addresses
n Unit of mapping is called a page
n All addresses in the same virtual

page are in the same physical
page

n Page table entry (PTE) contains
translation for a single page

n Table translates virtual page
number to physical page number
n Not all virtual memory has a

physical page
n Not every physical page need be

used
n Example:

n 64 KB virtual memory
n 32 KB physical memory

70–4K
44–8K

8–12K
12–16K

016–20K
20–24K
24–28K

328–32K
32–36K
36–40K

140–44K
544–48K
648–52K
-52–56K

56–60K
-60–64K

Virtual
address
space

Physical
memory

-

-
-
-
-
-
-

Chapter 4 22CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

What’s in a page table entry?

n Each entry in the page table contains
n Valid bit: set if this logical page number has a corresponding physical frame

in memory
n If not valid, remainder of PTE is irrelevant

n Page frame number: page in physical memory
n Referenced bit: set if data on the page has been accessed
n Dirty (modified) bit :set if data on the page has been modified
n Protection information

Page frame numberVRDProtection

Valid bitReferenced bitDirty bit

Chapter 4 23CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Example:
• 4 KB (=4096 byte) pages
• 32 bit logical addresses

p d

2d = 4096 d = 12

12 bits

32 bit logical address

32-12 = 20 bits

Mapping logical => physical address

n Split address from CPU into
two pieces
n Page number (p)
n Page offset (d)

n Page number
n Index into page table
n Page table contains base

address of page in physical
memory

n Page offset
n Added to base address to get

actual physical memory
address

n Page size = 2d bytes

Chapter 4 24CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

page number

p d

page offset

0
1

p-1
p

p+1
f

f d

Page frame number

...

page table
physical memory

0
1

...
f-1
f

f+1
f+2

...

Page frame number

CPU

Address translation architecture

Chapter 4 25CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

0

Page frame number

Logical memory (P0)

1
2
3
4
5
6
7
8
9

Physical
memory

Page table (P0)

Logical memory (P1) Page table (P1)

Page 4
Page 3
Page 2
Page 1
Page 0

Page 1
Page 0

0
8

2
9
4
3
6

Page 3 (P0)
Page 0 (P1)

Page 0 (P0)

Page 2 (P0)
Page 1 (P0)
Page 4 (P0)

Page 1 (P1)

Free
pages

Memory & paging structures

Chapter 4 26CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

884
960

955

...

220
657

401

...

1st level
page table

2nd level
page tables

...

...

...

...

...

...

...

...

...

main
memory

...

125
613

961

...

Two-level page tables

n Problem: page tables can be too
large
n 232 bytes in 4KB pages need 1

million PTEs
n Solution: use multi-level page

tables
n “Page size” in first page table is

large (megabytes)
n PTE marked invalid in first page

table needs no 2nd level page
table

n 1st level page table has pointers
to 2nd level page tables

n 2nd level page table has actual
physical page numbers in it

Chapter 4 27CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

More on two-level page tables

n Tradeoffs between 1st and 2nd level page table sizes
n Total number of bits indexing 1st and 2nd level table is

constant for a given page size and logical address length
n Tradeoff between number of bits indexing 1st and number

indexing 2nd level tables
n More bits in 1st level: fine granularity at 2nd level
n Fewer bits in 1st level: maybe less wasted space?

n All addresses in table are physical addresses
n Protection bits kept in 2nd level table

Chapter 4 28CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

Two-level paging: example

n System characteristics
n 8 KB pages
n 32-bit logical address divided into 13 bit page offset, 19 bit page number

n Page number divided into:
n 10 bit page number
n 9 bit page offset

n Logical address looks like this:
n p1 is an index into the 1st level page table
n p2 is an index into the 2nd level page table pointed to by p1

Chapter 4 29CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

...

...

2-level address translation example

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

...

0

1

p1

...

0
1

p2

19
physical address

1st level page table

2nd level page table

main memory

0
1

frame
number

13
Page
table
base

...

...

Chapter 4 30CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Implementing page tables in hardware

n Page table resides in main (physical) memory
n CPU uses special registers for paging

n Page table base register (PTBR) points to the page table
n Page table length register (PTLR) contains length of page table:

restricts maximum legal logical address
n Translating an address requires two memory accesses

n First access reads page table entry (PTE)
n Second access reads the data / instruction from memory

n Reduce number of memory accesses
n Can’t avoid second access (we need the value from memory)
n Eliminate first access by keeping a hardware cache (called a

translation lookaside buffer or TLB) of recently used page table
entries

Chapter 4 31CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Logical
page #

Physical
frame #

Example TLB

8
unused
2
3
12
29
22
7

3

1
0
12
6
11
4

Translation Lookaside Buffer (TLB)

n Search the TLB for the desired
logical page number
n Search entries in parallel
n Use standard cache techniques

n If desired logical page number is
found, get frame number from
TLB

n If desired logical page number
isn’t found
n Get frame number from page

table in memory
n Replace an entry in the TLB

with the logical & physical page
numbers from this reference

Chapter 4 32CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Handling TLB misses

n If PTE isn’t found in TLB, OS needs to do the lookup in the
page table

n Lookup can be done in hardware or software
n Hardware TLB replacement

n CPU hardware does page table lookup
n Can be faster than software
n Less flexible than software, and more complex hardware

n Software TLB replacement
n OS gets TLB exception
n Exception handler does page table lookup & places the result into the

TLB
n Program continues after return from exception
n Larger TLB (lower miss rate) can make this feasible

Chapter 4 33CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

How long do memory accesses take?

n Assume the following times:
n TLB lookup time = a (often zero - overlapped in CPU)
n Memory access time = m

n Hit ratio (h) is percentage of time that a logical page number
is found in the TLB
n Larger TLB usually means higher h
n TLB structure can affect h as well

n Effective access time (an average) is calculated as:
n EAT = (m + a)h + (m + m + a)(1-h)
n EAT =a + (2-h)m

n Interpretation
n Reference always requires TLB lookup, 1 memory access
n TLB misses also require an additional memory reference

Chapter 4 34CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Inverted page table

n Reduce page table size further: keep one entry for
each frame in memory

n PTE contains
n Virtual address pointing to this frame
n Information about the process that owns this page

n Search page table by
n Hashing the virtual page number and process ID
n Starting at the entry corresponding to the hash result
n Search until either the entry is found or a limit is reached

n Page frame number is index of PTE
n Improve performance by using more advanced

hashing algorithms

Chapter 4 35CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

pid1

pidk

pid0

Inverted page table architecture

process ID p = 19 bits offset = 13 bits

page number

1319
physical address

inverted page table

main memory

...

0
1

...

Page frame
number

page offset

pid p

p0

p1

pk

...

...

0
1

k

search

k

