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Chapter 2: Processes & Threads

Part 2
Interprocess Communication (IPC) & 

Synchronization
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Why do we need IPC?

n Each process operates sequentially
n All is fine until processes want to share data

n Exchange data between multiple processes
n Allow processes to navigate critical regions
n Maintain proper sequencing of actions in multiple 

processes
n These issues apply to threads as well

n Threads can share data easily (same address space)
n Other two issues apply to threads
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Shared variables
const int n;
typedef … Item;
Item buffer[n];
int in = 0, out = 0,

counter = 0;

Atomic statements:
Counter += 1;
Counter -= 1;

Consumer
Item citm;
while (1) {

while (counter == 0)
;

citm = buffer[out];
out = (out+1) % n;
counter -= 1;
…
consume the item in citm
…

}

Producer
Item pitm;
while (1) {

…
produce an item into pitm
…
while (counter == n)

;
buffer[in] = pitm;
in = (in+1) % n;
counter += 1;

}

Example: bounded buffer problem
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Problem: race conditions

n Cooperating processes 
share storage (memory)

n Both may read and write 
the shared memory

n Problem: can’t guarantee 
that read followed by write 
is atomic
n Ordering matters!

n This can result in erroneous 
results!

n We need to eliminate race 
conditions…

R1 <= x
R1 = R1+1
R1 => x

R3 <= x
R3 = R3+1
R3 => x

P1 P2 x=3

x=5
R1 <= x

R1 = R1+1
R1 => x

R3 <= x
R3 = R3+1

R3 => x
x=6!
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Critical regions
n Use critical regions to provide mutual exclusion and help fix race conditions
n Four conditions to provide mutual exclusion

n No two processes simultaneously in critical region
n No assumptions made about speeds or numbers of CPUs
n No process running outside its critical region may block another process
n No process must wait forever to enter its critical region

Process A

Process B B blocked

A enters
critical region

B tries to enter
critical region

B enters
critical region

A leaves
critical region

B leaves
critical region

Time
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Busy waiting: strict alternation

n Use a shared variable (turn) to keep track of whose turn it is
n Waiting process continually reads the variable to see if it can 

proceed
n This is called a spin lock because the waiting process “spins” in a tight 

loop reading the variable
n Avoids race conditions, but doesn’t satisfy criterion 3 for 

critical regions

while (TRUE) {
while (turn != 0)

; /* loop */
critical_region ();
turn = 1;
noncritical_region ();

}

while (TRUE) {
while (turn != 1)

; /* loop */
critical_region ();
turn = 0;
noncritical_region ();

}

Process 0 Process 1
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Busy waiting: working solution

#define FALSE 0
#define TRUE 1
#define N 2 // # of processes
int turn; // Whose turn is it?
int interested[N]; // Set to 1 if process j is interested
void enter_region(int process)
{

int other = 1-process; // # of the other process
interested[process] = TRUE; // show interest
turn = process; // Set it to my turn
while (turn==process && interested[other]==TRUE)

; // Wait while the other process runs
}
void leave_region (int process)
{

interested[process] = FALSE; // I’m no longer interested
} 
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int n; // # of processes
int choosing[n];
int number[n];

Bakery algorithm for many processes
n Notation used

n <<< is lexicographical order on (ticket#, process ID)
n (a,b) <<< (c,d) if (a<c) or ((a==c) and (b<d))
n Max(a0,a1,…,an-1) is a number k such that k>=ai for all I

n Shared data
n choosing initialized to 0
n number initialized to 0
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Bakery algorithm: code
while (1) {  // i is the number of the current process

choosing[i] = 1;
number[i] = max(number[0],number[1],…,number[n-1]) + 1;
choosing[i] = 0;
for (j = 0; j < n; j++) {

while (choosing[j])  // wait while j is choosing a
;                  // number

// Wait while j wants to enter and has a better number
// than we do.  In case of a tie, allow j to go if
// its process ID is lower than ours
while ((number[j] != 0) &&

((number[j] < number[i]) ||
((number[j] == number[i]) && (j < i))))

;
}
// critical section
number[i] = 0;
// rest of code

}
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Hardware for synchronization

n Prior methods work, but…
n May be somewhat complex
n Require busy waiting: process spins in a loop waiting for 

something to happen, wasting CPU time
n Solution: use hardware
n Several hardware methods

n Test & set: test a variable and set it in one instruction
n Atomic swap: switch register & memory in one instruction
n Turn off interrupts: process won’t be switched out unless it 

asks to be suspended
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Code for process Pi
while (1) {

while (TestAndSet(lock))
;

// critical section
lock = 0;
// remainder of code

}

Code for process Pi
while (1) {

while (Swap(lock,1) == 1)
;

// critical section
lock = 0;
// remainder of code

}

int lock = 0;

Mutual exclusion using hardware

n Single shared variable lock
n Still requires busy waiting, 

but code is much simpler
n Two versions

n Test and set
n Swap

n Works for any number of 
processes

n Possible problem with 
requirements
n Non-concurrent code can lead 

to unbounded waiting
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Solutions using busy waiting
n Problem: previous hardware solutions waste CPU time

n Both hardware and software solutions require spinlocks (busy waiting)
n Allow processes to sleep while they wait to execute their critical 

sections
n Advantage of busy waiting: multiprocessors
n Another problem of busy waiting: multiprocessors
n Another problem: priority inversion (higher priority process 

waits for lower priority process)
n Solution: use semaphores

n Synchronization mechanism that doesn’t require busy waiting
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Semaphores
n Solution: use semaphores

n Synchronization mechanism that doesn’t require busy waiting
n Implementation

n Semaphore S accessed by two atomic operations
n Down(S): while (S<=0) {}; S-= 1;
n Up(S): S+=1;

n Down() or Wait() is another name for P()
n Up() or Signal() is another name for V()
n Modify implementation to eliminate busy wait from Down()
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Critical sections using semaphores

Code for process Pi
while (1) {

down(mutex);
// critical section
up(mutex);
// remainder of code

}

Shared variables
Semaphore mutex;

n Define a class called 
Semaphore
n Class allows more complex 

implementations for 
semaphores

n Details hidden from processes
n Code for individual process 

is simple
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class Semaphore {
int value;
ProcessList pl;
void down ();
void up ();

};

Semaphore code
Semaphore::down ()
{

value -= 1;
if (value < 0) {

// add this process to pl
Sleep ();

}
}

Semaphore::up () {
Process P;

value += 1;
if (value <= 0) {

// remove a process P
// from pl
Wakeup (P);

}
}

Implementing semaphores with blocking

n Assume two operations:
n Sleep(): suspends current 

process
n Wakeup(P): allows process P 

to resume execution
n Semaphore is a class

n Track value of semaphore
n Keep a list of processes 

waiting for the semaphore
n Operations still atomic
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Process P0
.
.
.

// Execute code for A
flag.up ();

Process P1
.
.
.

flag.down ();
// Execute code for B

Shared variables
// flag initialized to 0
Semaphore flag;

Semaphores for barrier synchronization

n We want to execute B in P1 only after A executes in P0
n Use a semaphore initialized to 0
n Use up() to notify P1 at the appropriate time



Chapter 2 17CS 1550, cs.pitt.edu 
(originaly modified by Ethan 
L. Miller and Scott A. 

Barriers

n Used for synchronizing multiple processes
n Processes wait at a “barrier” until all in the group arrive
n After all have arrived, all processes can proceed
n May be implemented using locks and condition variables

B and D at
barrier

A

B

C

D

All at
barrier

A

B

C

D

Barrier releases
all processes

A

B

C

D

Processes approaching
barrier

A

B

C

D
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Types of semaphores

n Two different types of semaphores
n Counting semaphores
n Binary semaphores

n Counting semaphore
n Value can range over an unrestricted range

n Binary semaphore
n Only two values possible

n 1 means the semaphore is available
n 0 means a process has acquired the semaphore

n May be simpler to implement
n Possible to implement one type using the other



Deadlock and Starvation
n Deadlock – two or more processes are waiting indefinitely for an event that can be 

caused by only one of the waiting processes
n Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);
... ...
signal(S);                 signal(Q);
signal(Q);                 signal(S);

n Starvation – indefinite blocking  
n A process may never be removed from the semaphore queue in which it is 

suspended
n Priority Inversion – Scheduling problem when lower-priority process holds a 

lock needed by higher-priority process
n Solved via priority-inheritance protocol
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Classical synchronization problems
n Bounded Buffer

n Multiple producers and consumers
n Synchronize access to shared buffer

n Readers & Writers
n Many processes that may read and/or write
n Only one writer allowed at any time
n Many readers allowed, but not while a process is writing

n Dining Philosophers
n Resource allocation problem
n N processes and limited resources to perform sequence of tasks

n Goal: use semaphores to implement solutions to these problems
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Producer
int in = 0;
Item pitem;
while (1) {

// produce an item
// into pitem
empty.down();
mutex.down();
buffer[in] = pitem;
in = (in+1) % n;
mutex.up();
full.up();

}

const int n;
Semaphore empty(n),full(0),mutex(1);
Item buffer[n];

Consumer
int out = 0;
Item citem;
while (1) {

full.down();
mutex.down();
citem = buffer[out];
out = (out+1) % n;
mutex.up();
empty.up();
// consume item from
// citem

}

Bounded buffer problem

n Goal: implement producer-consumer without busy waiting



Readers-Writers Problem
n A data set is shared among a number of concurrent processes

n Readers – only read the data set; they do not perform any 
updates

n Writers   – can both read and write
n Problem – allow multiple readers to read at the same time

n Only one single writer can access the shared data at the same 
time

n Several variations of how readers and writers are considered  –
all involve some form of priorities

n Shared Data
n Data set
n Semaphore rw_mutex initialized to 1
n Semaphore mutex initialized to 1
n Integer read_count initialized to 0
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Readers-writers problem

Reader process
…
mutex.down();
nreaders += 1;
if (nreaders == 1) // wait if

writing.down();  // 1st reader
mutex.up();
// Read some stuff
mutex.down();
nreaders -= 1;
if (nreaders == 0) // signal if

writing.up(); // last reader
mutex.up();
…

Shared variables
int nreaders;
Semaphore mutex(1), writing(1);

Writer process
…
writing.down();
// Write some stuff
writing.up();
…



Readers-Writers Problem Variations

n First variation – no reader kept waiting unless 
writer has permission to use shared object

n Second variation – once writer is ready, it performs 
the write ASAP

n Both may have starvation leading to even more 
variations

n Problem is solved on some systems by kernel 
providing reader-writer locks
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Dining Philosophers
n N philosophers around a 

table
n All are hungry
n All like to think

n N chopsticks available
n 1 between each pair of 

philosophers
n Philosophers need two 

chopsticks to eat
n Philosophers alternate 

between eating and thinking
n Goal: coordinate use of 

chopsticks
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Code for philosopher i
while(1) {

chopstick[i].down();
chopstick[(i+1)%n].down();
// eat
chopstick[i].up();
chopstick[(i+1)%n].up();
// think

}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

Dining Philosophers: solution 1

n Use a semaphore for each 
chopstick

n A hungry philosopher
n Gets the chopstick to his right
n Gets the chopstick to his left
n Eats
n Puts down the chopsticks

n Potential problems?
n Deadlock
n Fairness
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Code for philosopher i
int i1,i2;
while(1) {

if (i != (n-1)) {
i1 = i;
i2 = i+1;

} else {
i1 = 0;
i2 = n-1;

}
chopstick[i1].down();
chopstick[i2].down();
// eat
chopstick[i1].up();
chopstick[i2].up();
// think

}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

Dining Philosophers: solution 2

n Use a semaphore for each 
chopstick

n A hungry philosopher
n Gets lower, then higher 

numbered chopstick
n Eats
n Puts down the chopsticks

n Potential problems?
n Deadlock
n Fairness
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Dining philosophers with locks

Shared variables
const int n;
// initialize to THINK
int state[n];
Lock mutex;
// use mutex for self
Condition self[n];

Code for philosopher j
while (1) {

// pickup chopstick
mutex.Acquire();
state[j] = HUNGRY;
test(j);
if (state[j] != EAT)

self[j].Wait();
mutex.Release();
// eat
mutex.Acquire();
state[j] = THINK;
test((j+1)%n); // next
test((j+n-1)%n); // prev
mutex.Release();
// think

}

void test(int k)
{

if ((state[(k+n-1)%n)]!=EAT) &&
(state[k]==HUNGRY) &&
(state[(k+1)%n]!=EAT)) {

state[k] = EAT;
self[k].Signal();

}
}
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The Sleepy Barber Problem
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Code for the Sleepy Barber Problem

void barber(void)
{
while(TRUE) {
// Sleep if no customers
customers.down();
// Decrement # of waiting people
mutex.down();
waiting -= 1;
// Wake up a customer to cut hair
barbers.up();
mutex.up();
// Do the haircut
cut_hair();
}
}

#define CHAIRS 5
Semaphore customers=0;
Semaphore barbers=0;
Semaphore mutex=0;
int waiting=0;

void customer(void)
{
mutex.down();
// If there is space in the chairs
if (waiting<CHAIRS) {
// Another customer is waiting
waiting++;
// Wake up the barber.  This is
// saved up, so the barber doesn’t
// sleep if a customer is waiting
customers.up();
mutex.up();
// Sleep until the barber is ready
barbers.down();
get_haircut();
} else {
// Chairs full, leave the critical
// region
mutex.up ();
}
}
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Monitors
n A monitor is another kind of high-level synchronization 

primitive
n One monitor has multiple entry points
n Only one process may be in the monitor at any time
n Enforces mutual exclusion - less chance for programming errors

n Monitors provided by high-level language
n Variables belonging to monitor are protected from simultaneous access
n Procedures in monitor are guaranteed to have mutual exclusion

n Monitor implementation
n Language / compiler handles implementation
n Can be implemented using semaphores
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monitor mon {
int foo;
int bar;
double arr[100];
void proc1(…) {
}
void proc2(…) {
}
void mon() {  // initialization code
}

};

Monitor usage

n This looks like C++ code, but it’s not supported by C++
n Provides the following features:

n Variables foo, bar, and arr are accessible only by proc1 & proc2
n Only one process can be executing in either proc1 or proc2 at any time
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Condition variables in monitors

n Problem: how can a process wait inside a monitor?
n Can’t simply sleep: there’s no way for anyone else to enter
n Solution: use a condition variable

n Condition variables support two operations
n Wait(): suspend this process until signaled
n Signal(): wake up exactly one process waiting on this 

condition variable
n If no process is waiting, signal has no effect
n Signals on condition variables aren’t “saved up”

n Condition variables are only usable within monitors
n Process must be in monitor to signal on a condition 

variable
n Question: which process gets the monitor after Signal()?
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Monitor semantics
n Problem: P signals on condition variable X, waking Q

n Both can’t be active in the monitor at the same time
n Which one continues first?

n Mesa semantics
n Signaling process (P) continues first
n Q resumes when P leaves the monitor
n Seems more logical: why suspend P when it signals?

n Hoare semantics
n Awakened process (Q) continues first
n P resumes when Q leaves the monitor
n May be better: condition that Q wanted may no longer hold when P leaves the 

monitor
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Locks & condition variables
n Monitors require native language support
n Provide monitor support using special data types and procedures

n Locks (Acquire(), Release())
n Condition variables (Wait(), Signal())

n Lock usage
n Acquiring a lock == entering a monitor
n Releasing a lock == leaving a monitor

n Condition variable usage
n Each condition variable is associated with exactly one lock
n Lock must be held to use condition variable
n Waiting on a condition variable releases the lock implicitly
n Returning from Wait() on a condition variable reacquires the lock
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class Lock {
Semaphore mutex(1);
Semaphore next(0);
int nextCount = 0;

};

Lock::Acquire()
{

mutex.down();
}

Lock::Release()
{

if (nextCount > 0)
next.up();

else
mutex.up();

}

Implementing locks with semaphores

n Use mutex to ensure 
exclusion within the lock 
bounds

n Use next to give lock to 
processes with a higher 
priority (why?)

n nextCount indicates 
whether there are any 
higher priority waiters
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class Condition {
Lock *lock;
Semaphore condSem(0);
int semCount = 0;

};

Condition::Wait ()
{

semCount += 1;
if (lock->nextCount > 0)

lock->next.up();
else

lock->mutex.up();
condSem.down ();
semCount -= 1;

}

Condition::Signal ()
{

if (semCount > 0) {
lock->nextCount += 1;
condSem.up ();
lock->next.down ();
lock->nextCount -= 1;

}
}

n Are these Hoare or Mesa 
semantics?

n Can there be multiple 
condition variables for a 
single Lock?

Implementing condition variables
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Message passing

n Synchronize by exchanging messages
n Two primitives:

n Send: send a message
n Receive: receive a message
n Both may specify a “channel” to use

n Issue: how does the sender know the receiver got the 
message?

n Issue: authentication


