‘| Chapter 2: Processes & Threads

Part 2

Interprocess Communication (IPC) &
Synchronization

Chapter 2

% Why do we need IPC?

m Each process operates sequentially

= All 1s fine until processes want to share data
Exchange data between multiple processes

Allow processes to navigate critical regions

Maintain proper sequencing of actions in multiple
processes

m These issues apply to threads as well
Threads can share data easily (same address space)
Other two 1ssues apply to threads

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Example: bounded buffer problem

Shared variables Atomic statements:
const int n; -1 Counter += 1;
typedef .. Item; e .

Item buffer[n]; S Counter -= 1; ;

int in = @, out = 0,
counter = 0;

Producer Consumer
ITtem pitm; ITtem citm;
while (1) { while (1) {

" j while (counter == Q)
produce an item into pitm/ ; ;
" / citm = buffer[out]y
while (counter == n) / out = (out+l) % ny

. 2 counter -= 1; |~

bu%Fer[in] = pitm; -
in = (in+l) % n; 7 consume the item in citm

}

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

-

Problem: race conditions

= Cooperating processes - _R_1_E<1=_;< ——————— S
share storage (memory) 1 R1:1
= Both may read and write R1 => x
the shared memory R3 <= x
= Problem: can’t guarantee E; ;Ri”
that read followed by write === ——-—
1S atomic R1T <= x
Ordering matters! R3 <= x
s This can result in erroneous R3 = R3+1
results! AL = Rl
R1 => x
= We need to eliminate race R3 — x
conditions... = Tmmmmmmsmmmmmmmmseoee-

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Critical regions

m Use critical regions to provide mutual exclusion and help fix race conditions

= Four conditions to provide mutual exclusion
No two processes simultaneously in critical region
No assumptions made about speeds or numbers of CPUs
No process running outside its critical region may block another process
No process must wait forever to enter its critical region

A enters
critical region

A leaves
critical region

B leaves
critical region

Process A ™

B tries to enter , Benters
critical region ﬁ critical region
1

ProceSS B ...

v

Time

CS 1550, cs.pitt.edu 5
(originalv modified bv Ethan Chapter 2

3f Busy waiting: strict alternation

Process 0

Process 1

while (TRUE) {
while (turn != 0)

; /* loop */
critical_region ();
turn = 1;
noncritical_region ();

while (TRUE) {
while (turn != 1)

; /* loop */
critical_region ();
turn = 0;
noncritical_region ();

}

= Use a shared variable (turn) to keep track of whose turn it 1s
= Waiting process continually reads the variable to see if it can

proceed

This 1s called a spin lock because the waiting process “spins” in a tight

loop reading the variable

= Avoids race conditions, but doesn’t satisty criterion 3 for

critical regions

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Chapter 2 6

%f Busy waiting: working solution

#define FALSE 0@
#define TRUE 1

#define N 2 // # of processes
int turn; // Whose turn is 1it?
int interested[N]; // Set to 1 if process j 1is interested

volid enter_region(int process)

{

int other = l-process; // # of the other process
interested[process] = TRUE; // show interest
turn = process; // Set 1t to my turn
while (turn==process && interested[other]==TRUE)
; // Wait while the other process runs
¥

volid leave_region (int process)

{

interested[process] = FALSE; // I’m no longer interested

}

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Bakery algorithm for many processes

= Notation used
<<< 1s lexicographical order on (ticket#, process ID)
(a,b) <<< (c,d) if (a<c) or ((a==c) and (b<d))
Max(a0,al,...,an-1) 1s a number k such that k>=ai for all I

s Shared data

choosing initialized to O
number initialized to O

int n; // # of processes
int choosing[n];
int number[n];

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

91 Bakery algorithm: code

while (1) { // 1 is the number of the current process
choosing[i] = 1;
number[i] = max(Cnhumber[@],number[1],..,number[n-1]) + 1;
choosing[i] = 0;
for (3 =0; J <n; J++) {
wh11e (ch0051ng[3]) // wait while j 1s choosing a
// number
// Wait while j wants to enter and has a better number
// than we do. 1In case of a tie, allow j to go if
// its process ID is lower than ours
while ((number[j] '= 0) &&
(Cnumber[j] < number[i]) ||
(Cnumber[j] == number[i]) && (J < 1))))
¥
// critical section
number[i] = 0;
// rest of code

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

-

Hardware for synchronization

s Prior methods work, but...
May be somewhat complex
Require busy waiting: process spins in a loop waiting for
something to happen, wasting CPU time

= Solution: use hardware

m Several hardware methods
Test & set: test a variable and set it 1n one 1nstruction
Atomic swap: switch register & memory in one instruction

Turn off interrupts: process won’t be switched out unless it
asks to be suspended

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Mutual exclusion using hardware

= Single shared variable lock |12t tock = 0

= Still requires busy waiting, |Code for process P;

but code is much simpler | ¥htie (1) 1
while (TestAndSet(lock))

= Two versions :
Test and set // critical section

S lock = 0;
wap // remainder of code
= Works for any number of }
Processes Code for process P;
= Possible problem with while (1) {
. while (Swap(lock,1l) == 1)
requirements ;
Non-concurrent code can lead // critical section
to unbounded waiting lock = 0;

// remainder of code

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Solutions using busy waiting

= Problem: previous hardware solutions waste CPU time

Both hardware and software solutions require spinlocks (busy waiting)

Allow processes to sleep while they wait to execute their critical
sections

= Advantage of busy waiting: multiprocessors

= Another problem of busy waiting: multiprocessors

= Another problem: priority inversion (higher priority process
waits for lower priority process)

= Solution: use semaphores
Synchronization mechanism that doesn’t require busy waiting

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

3 Semaphores

= Solution: use semaphores
Synchronization mechanism that doesn’t require busy waiting

= Implementation

Semaphore S accessed by two atomic operations
= Down(S): while (S<=0) {}; S-=1;
m Up(S): S+=1;

Down() or Wait() is another name for P()

Up() or Signal() is another name for V()

Modify implementation to eliminate busy wait from Down()

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

3 Critical sections using semaphores

= Define a class called Shared variables
Semaphore Semaphore mutex;

Class allows more complex
implementations for

Code for process P;
while (1) {

sema.p hOIjeS down (mutex) ;
Details hidden from processes // critical section
= Code for individual process up (mutex) ;
.. // remainder of code
1s simple }

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

Implementing semaphores with blocking

= Assume two operations:

Sleep(): suspends current
process

Wakeup(P): allows process P
to resume execution
= Semaphore 1s a class

Track value of semaphore

Keep a list of processes
waiting for the semaphore

= Operations still atomic

class Semaphore {
int value;
ProcessList pl;
void down ();
void up QO;

¥

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Semaphore code
Semaphore: :down ()
{
value -= 1;
1f (value < @) {
// add this process to pl

Sleep);
}

}

Semaphore::up (O {
Process P;
value += 1;
1f (value <= 0) {
// remove a process P
// from pl
Wakeup (P);
¥
¥

Chapter 2

9 Semaphores for barrier synchronization

= We want to execute B in P, only after A executes in P,
= Use a semaphore initialized to 0
= Use up() to notify P, at the appropriate time

Shared variables

// flag initialized to 0
Semaphore flag;

Process P, Process P,
// Execute code for A flag.down ();
flag.up () // Execute code for B

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

.

Barriers

= Used for synchronizing multiple processes

= Processes wait at a “barrier” until all in the group arrive
= After all have arrived, all processes can proceed

= May be implemented using locks and condition variables

Processes approaching B and D at Allat Barrier releases

barrier barrier barrier all processes

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

3 Types of semaphores

s Two different types of semaphores
Counting semaphores
Binary semaphores
s Counting semaphore
Value can range over an unrestricted range
= Binary semaphore

Only two values possible
= | means the semaphore is available
= 0 means a process has acquired the semaphore

May be simpler to implement
m Possible to implement one type using the other

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

Deadlock and Starvation

m Deadlock — two or more processes are waiting indefinitely for an event that can be
caused by only one of the waiting processes
m Let Sand Q be two semaphores initialized to 1

PO Pl
wait (S) ; wait (Q) ;
wait (Q) ; wait(S) ;
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

m Starvation — indefinite blocking -
A process may never be removed from the semaphore queue in which it is ©

suspended 153

= Priority Inversion — Scheduling problem when lower-priority process holda
lock needed by higher-priority process N
Solved via priority-inheritance protocol ems

She

19 Spring 2018

3t Classical synchronization problems

= Bounded Buffer
Multiple producers and consumers
Synchronize access to shared buffer
= Readers & Writers
Many processes that may read and/or write
Only one writer allowed at any time
Many readers allowed, but not while a process is writing
= Dining Philosophers
Resource allocation problem
N processes and limited resources to perform sequence of tasks

= Goal: use semaphores to implement solutions to these problems

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Bounded buffer problem

= Goal: implement producer-consumer without busy waiting

const int n;
Semaphore empty(n),full(@),mutex(1l);
Item buffer[n];

Producer Consumer

int in = 0; int out = 0;

ITtem pitem; ITtem citem;

while (1) { while (1) {
// produce an item full.down();
// into pitem mutex.down();
empty.down(); citem = buffer[out];
mutex.down(); out = (out+l) % n;
buffer[in] = pitem; mutex.up(Q);
in = (in+l) % n; empty.up(Q);
mutex.up(Q); // consume item from
full.upQ); // citem

hy hy

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Readers-Writers Problem

= A data set 1s shared among a number of concurrent processes

Readers — only read the data set; they do not perform any
updates

Writers — can both read and write
= Problem — allow multiple readers to read at the same time
Only one single writer can access the shared data at the same
time
= Several variations of how readers and writers are considered —
all involve some form of priorities

= Shared Data

CS/

Data set ©
Semaphore rw_mutex initialized to 1 ;055
Semaphore mutex initialized to 1 pg
Integer read count initialized to 0 oms

She
rif

22 Spring 2018 ttab

9 Readers-writers problem

Shared variables

int nreaders;
Semaphore mutex(1), writing(l);

Reader process Writer process

mutex.down(); writing.down();

nreaders += 1; // Write some stuff

if (nreaders == 1) // wait if writing.upQ);
writing.down(); // 1st reader -

mutex.up(Q);

// Read some stuff
mutex.down();

nreaders -= 1;
if (nreaders == 0) // signal if
writing.up(Q); // last reader

mutex.up(Q);

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Chapter 2

-

24

Readers-Writers Problem Variations

First variation — no reader kept waiting unless
writer has permission to use shared object

Second variation — once writer is ready, it performs
the write ASAP

Both may have starvation leading to even more
variations

Problem 1s solved on some systems by kernel
providing reader-writer locks

Spring 2018

3t Dining Philosophers

= N philosophers around a
table
All are hungry
All like to think
= N chopsticks available {% o

I between each pair of
philosophers

= Philosophers need two
chopsticks to eat

= Philosophers alternate
between eating and thinking

m Goal: coordinate use of
chopsticks

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

91 Dining Philosophers: solution 1

= Use a semaphore for each | qpared variables
chopstick const int n;

. // initialize to 1
= A hungry phllosopher Semaphore chopstick[n];
Gets the chopstick to his right

Gets the chopstick to his left | cgde for philosopher i

Eats while(l).{ .
Puts down the chopsticks chopstick[1i].down();
. chopstick[(1+1)%n].down();
= Potential problems? // eat
Deadlock CEOPS’C?C::[*L:J -up();
Fairness 5/O-Ft)ﬁf:1ﬁ [CL+10%n].up();
ks

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

.

Dining Philosophers: solution 2

= Use a semaphore for each
chopstick

= A hungry philosopher

Gets lower, then higher
numbered chopstick

Eats
Puts down the chopsticks
= Potential problems?

Deadlock
Fairness

Shared variables

const int n;
// 1initialize to 1
Semaphore chopstick[n];

Code for philosopher i
int 11,12;
while(1) {
if (1 '= (n-1)) {
11 = 1;
12 = 1+1;
} else {
11 = 0;
12 = n-1;
}

chopstick[11].down();
chopstick[12].down();
// eat
chopstick[i1l].upQ);
chopstick[i2].upQ);
// think

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Chapter 2

9 Dining philosophers with locks

Shared variables

const int n;

// initialize to THINK
int state[n];

Lock mutex;

// use mutex for self
Condition self[n];

void test(int k)
{
1f ((state[(k+n-1)%n)]!=EAT) &&
(state[k]==HUNGRY) &&
(state[(k+1)%n]!'=EAT)) {
state[k] = EAT;
self[k].Signal(Q);
}
}

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Code for philosopher j
while (1) {
// pickup chopstick
mutex.Acquire();
state[j] = HUNGRY;
test(3);
1f (state[j] !'= EAT)
self[j].Wait();
mutex.Release();
// eat
mutex.Acquire();
state[j] = THINK;
test((3+1)%n); // next
test((3+n-1D%n); // prev
mutex.Release();
// think

Chapter 2

‘| The Sleepy Barber Problem

CS 1550, cs.pitt.edu 29 f.‘;‘: ~
(oriainalv modified bv Ethan Chapter 2 s

9 Code for the Sleepy Barber Problem

#define CHAIRS 5
Semaphore customers=0;
Semaphore barbers=0;
Semaphore mutex=0;

int waiting=0;

void barber(void)

{

while(TRUE) {
// Sleep if no customers
customers.down();
// Decrement # of waiting people
mutex.down();
waiting -= 1;
// Wake up a customer to cut hair

void customer(void)

mutex.down();
// If there is space in the chairs
1f (waiting<CHAIRS) {

// Another customer 1s waiting
waiting++;

// Wake up the barber. This 1is

// saved up, so the barber doesn’t
// sleep 1f a customer 1is waiting
customers.up(Q);

mutex.up();

// Sleep until the barber 1is ready
barbers.down();

get_haircut();

. } else {
33E2§f352§§)’ // Chairs full, leave the critical
// Do the haircut // region .
cut_hairQ); mutex.up Q;
} ¥
} }
CS 1550, cs.pitt.edu Chapter 2

(oriainalv modified bv Ethan

-

Monitors

= A monitor 1s another kind of high-level synchronization
primitive

One monitor has multiple entry points

Only one process may be in the monitor at any time

Enforces mutual exclusion - less chance for programming errors
= Monitors provided by high-level language

Variables belonging to monitor are protected from simultaneous access

Procedures in monitor are guaranteed to have mutual exclusion
= Monitor implementation

Language / compiler handles implementation

Can be implemented using semaphores

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Monitor usage

monitor mon {
int foo;
int bar;
double arr[100];
void procl(..) {

}
void proc2(..) {
}
void mon() { // initialization code
}
s

= This looks like C++ code, but it’s not supported by C++

= Provides the following features:
Variables foo, bar, and arr are accessible only by procl & proc2
Only one process can be executing in either procl or proc2 at any time

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

.

Condition variables in monitors

= Problem: how can a process wait inside a monitor?

Can’t simply sleep: there’s no way for anyone else to enter
Solution: use a condition variable

= Condition variables support two operations
Wait(): suspend this process until signaled

Signal(): wake up exactly one process waiting on this

condition variable
= If no process is waiting, signal has no effect
= Signals on condition variables aren’t “saved up”

= Condition variables are only usable within monitors

Process must be 1n monitor to signal on a condition
variable

Question: which process gets the monitor after Signal()?

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

31 Monitor semantics

= Problem: P signals on condition variable X, waking Q
Both can’t be active in the monitor at the same time
Which one continues first?

= Mesa semantics
Signaling process (P) continues first
Q resumes when P leaves the monitor
Seems more logical: why suspend P when it signals?

s Hoare semantics
Awakened process (Q) continues first
P resumes when Q leaves the monitor

May be better: condition that Q wanted may no longer hold when P leaves the
monitor

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

3 Locks & condition variables

= Monitors require native language support
= Provide monitor support using special data types and procedures
Locks (Acquire(), Release())
Condition variables (Wait(), Signal())
s Lock usage
Acquiring a lock == entering a monitor
Releasing a lock == leaving a monitor
= Condition variable usage
Each condition variable is associated with exactly one lock
Lock must be held to use condition variable
Waiting on a condition variable releases the lock implicitly
Returning from Wait() on a condition variable reacquires the lock

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

3 Implementing locks with semaphores

s Use mutex to ensure
class Lock {

Semaphore mutex(1); exclusion within the lock
Semaphore next(0);
int nextCount = 0; bounds _
3 = Use next to give lock to
Lock: : Acquire() processes with a higher
{ priority (why?)
) mutex.down(); = nextCount indicates
whether there are any
Lock: :Release() hich . .
g 1gher priority waiters
if (nextCount > 0)
next.up();
else
mutex.up();
¥

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

9 Implementing condition variables

class Condition { Condition::Signal ()
Lock *lock; {
Semaphore condSem(0); 1f (semCount > @) {
int semCount = 0; lock->nextCount += 1;
}s condSem.up ();
lock->next.down ();
Condition::Wait O ! lock->nextCount -= 1;
{
semCount += 1; ¥
if (lock->nextCount > 0)
lock->next.u ;
olse PO = Are these Hoare or Mesa
Llock->mutex.up(); semantics?
condSem.down (); .
semCount -= 1; = Can there be multiple
¥ condition variables for a

single Lock?

CS 1550, cs.pitt.edu
(oriainalv modified bv Ethan

Chapter 2

3 Message passing

= Synchronize by exchanging messages
» Two primitives:
Send: send a message

Receive: receive a message
Both may specify a “channel” to use

m Issue: how does the sender know the receiver got the
message”?
= Issue: authentication

CS 1550, cs.pitt.edu
(originalv modified bv Ethan Chapter 2

