
Chapter 1

CS 1550:
Introduction to Operating Systems

Prof. Ahmed Amer

amer@cs.pitt.edu
http://www.cs.pitt.edu/~amer/cs1550

Chapter 1 2CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Class outline

Introduction, concepts, review & historical
perspective
Processes

Synchronization
Scheduling
Deadlock

Memory management, address translation, and
virtual memory
Operating system management of I/O
File systems
Security & protection
Distributed systems (as time permits)

Chapter 1 3CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Overview: Chapter 1

What is an operating system, anyway?
Operating systems history
The zoo of modern operating systems
Review of computer hardware
Operating system concepts
Operating system structure

User interface to the operating system
Anatomy of a system call

Chapter 1 4CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

What is an operating system?

A program that runs on the “raw” hardware and supports
Resource Abstraction
Resource Sharing

Abstracts and standardizes the interface to the user across
different types of hardware

Virtual machine hides the messy details which must be performed

Manages the hardware resources
Each program gets time with the resource
Each program gets space on the resource

May have potentially conflicting goals:
Use hardware efficiently
Give maximum performance to each user

Chapter 1 5CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Operating system timeline

First generation: 1945 – 1955
Vacuum tubes
Plug boards

Second generation: 1955 – 1965
Transistors
Batch systems

Third generation: 1965 – 1980
Integrated circuits
Multiprogramming

Fourth generation: 1980 – present
Large scale integration
Personal computers

Next generation: ???
Systems connected by high-speed networks?
Wide area resource management?

Chapter 1 6CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

First generation: direct input

Run one job at a time
Enter it into the computer (might require rewiring!)
Run it
Record the results

Problem: lots of wasted computer time!
Computer was idle during first and last steps
Computers were very expensive!

Goal: make better use of an expensive commodity:
computer time

Chapter 1 7CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Second generation: batch systems

Bring cards to 1401
Read cards onto input tape
Put input tape on 7094
Perform the computation, writing results to output tape
Put output tape on 1401, which prints output

Chapter 1 8CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

$END

$RUN

$LOAD

Structure of a typical 2nd generation job

$FORTRAN

$JOB, 10,6610802, ETHAN MILLER

FORTRAN
program

Data for
program

Chapter 1 9CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Spooling

Original batch systems used tape drives
Later batch systems used disks for buffering

Operator read cards onto disk attached to the computer
Computer read jobs from disk
Computer wrote job results to disk
Operator directed that job results be printed from disk

Disks enabled simultaneous peripheral operation on-
line (spooling)

Computer overlapped I/O of one job with execution of
another
Better utilization of the expensive CPU
Still only one job active at any given time

Chapter 1 10CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Operating
system

Third generation: multiprogramming

Multiple jobs in memory
Protected from one another

Operating system protected
from each job as well
Resources (time, hardware)
split between jobs
Still not interactive

User submits job
Computer runs it
User gets results minutes
(hours, days) later

Job 1

Job 2

Job 3

Memory
partitions

Chapter 1 11CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Timesharing

Multiprogramming allowed several jobs to be active
at one time

Initially used for batch systems
Cheaper hardware terminals -> interactive use

Computer use got much cheaper and easier
No more “priesthood”
Quick turnaround meant quick fixes for problems

Chapter 1 12CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Types of modern operating systems

Mainframe operating systems: MVS
Server operating systems: FreeBSD, Solaris
Multiprocessor operating systems: Cellular IRIX
Personal computer operating systems: Windows,
Unix
Real-time operating systems: VxWorks
Embedded operating systems
Smart card operating systems

⇒Some operating systems can fit into more than one
category

Chapter 1 13CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Components of a simple PC

Hard drive
controller

Video
controller

Memory

USB
controller

Network
controller

Outside
world

CPU Computer internals
(inside the “box”)

Chapter 1 14CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Execute
unit

Execute
unit

Execute
unit

Execute
unit

Buffer

Fetch
unit

Decode
unit

Fetch
unit

Decode
unit

Fetch
unit

Decode
unit

CPU internals

Pipelined CPU Superscalar CPU

Chapter 1 15CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Access latency

1 ns

2–5 ns

50 ns

5 ms

50 sec

< 1 KB

1 MB

256 MB

40 GB

> 1 TB

Capacity

Storage pyramid

Registers

Cache (SRAM)

Main memory (DRAM)

Magnetic disk

Magnetic tape

Goal: really large memory with very low latency
Latencies are smaller at the top of the hierarchy
Capacities are larger at the bottom of the hierarchy

Solution: move data between levels to create illusion of large
memory with low latency

Better

Better

Chapter 1 16CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Disk drive structure

sector

cylinder

platter

spindle

track

head

actuator

surfaces

Data stored on surfaces
Up to two surfaces per platter
One or more platters per disk

Data in concentric tracks
Tracks broken into sectors

256B-1KB per sector

Cylinder: corresponding
tracks on all surfaces

Data read and written by
heads

Actuator moves heads
Heads move in unison

Chapter 1 17CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Memory

User program
and data

User program
and data

Operating
system

Address

0x1dfff

0x23000

0x27fff

0x2b000

0x2ffff

0

Single base/limit pair: set for each process
Two base/limit registers: one for program, one for data

Base

Limit

User data

User program

Operating
system

User data

Base1

Limit2

Limit1

Base2

Address

0x1dfff

0x23000

0x29000

0x2bfff

0x2ffff

0

0x2d000

0x24fff

Chapter 1 18CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Anatomy of a device request

Interrupt
controller

CPU
5 Disk

controller

3 2

61 4

Left: sequence as seen by hardware
Request sent to controller, then to disk
Disk responds, signals disk controller which tells interrupt controller
Interrupt controller notifies CPU

Right: interrupt handling (software point of view)

Instructionn

Operating
system

Instructionn+1

Interrupt handler

1: Interrupt

2: Process interrupt

3: Return

Chapter 1 19CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Operating systems concepts

Many of these should be familiar to Unix users…
Processes (and trees of processes)
Deadlock
File systems & directory trees
Pipes
We’ll cover all of these in more depth later on, but
it’s useful to have some basic definitions now

Chapter 1 20CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Processes

Process: program in execution
Address space (memory) the
program can use
State (registers, including
program counter & stack
pointer)

OS keeps track of all processes in
a process table
Processes can create other
processes

Process tree tracks these
relationships
A is the root of the tree
A created three child processes:
B, C, and D
C created two child processes: E
and F
D created one child process: G

A

B

E F

C D

G

Chapter 1 21CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Inside a (Unix) process

Processes have three
segments

Text: program code
Data: program data

Statically declared variables
Areas allocated by malloc()
or new

Stack
Automatic variables
Procedure call information

Address space growth
Text: doesn’t grow
Data: grows “up”
Stack: grows “down”

Stack

Data

Text

0x7fffffff

0

Data

Chapter 1 22CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Deadlock

Potential deadlock Actual deadlock

Chapter 1 23CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Root directory

bin cse

faculty grads

ls ps cp csh

Hierarchical file systems

elm sbrandt kag amer4

stuff

classes research

stuff

Chapter 1 24CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Interprocess communication

Processes want to exchange information with each other
Many ways to do this, including

Network
Pipe (special file): A writes into pipe, and B reads from it

A B

Chapter 1 25CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

System calls

Programs want the OS to perform a service
Access a file
Create a process
Others…

Accomplished by system call
Program passes relevant information to OS
OS performs the service if

The OS is able to do so
The service is permitted for this program at this time

OS checks information passed to make sure it’s OK
Don’t want programs reading data into other programs’ memory!

Chapter 1 26CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Making a system call

System call:
read(fd,buffer,length)

Program pushes arguments,
calls library
Library sets up trap, calls
OS
OS handles system call
Control returns to library
Library returns to user
program

Return to caller

Trap to kernel

Trap code in register

Increment SP

Call read

Push arguments

Dispatch
Sys call
handler

Kernel
space
(OS)

User
space

0

0xffffffff

1

2

3

4

5 6

7

8

9

Library
(read call)

User
code

Chapter 1 27CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

System calls for files & directories

Remove name as a link to an object (deletes
the object if name was the only link to it)

s = unlink(name)

Create a new entry (name2) that points to the
same object as name1

s = link(name1,name2)

Remove a directory (must be empty)s = rmdir(name)

Create a new directorys = mkdir(name,mode)

Get a file’s status information (in buffer)s = stat(name,&buffer)

Move the “current” pointer for a files = lseek(fd,offset,whence)

Write data from a buffer into a filen = write(fd,buffer,size)

Read data from a file into a buffern = read(fd,buffer,size)

Close an open files = close(fd)

Open a file for reading and/or writingfd = open(name,how)

DescriptionCall

Chapter 1 28CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Get the elapsed time since 1 Jan 1970seconds = time(&seconds)

Change a file’s protection bitss = chmod(name,mode)

Send a signal to a processs = kill(pid,signal)

Change the working directorys = chdir(dirname)

Terminate process execution and return
status

exit(status)

Replace a process’ core images = execve(name,argv,environp)

Wait for a child to terminatepid=waitpid(pid,&statloc,options)

Create a child process identical to the
parent

pid = fork()

DescriptionCall

More system calls

Chapter 1 29CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

A simple shell

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt */
read_command (command, parameters) /* input from terminal */

if (fork() != 0) { /* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code */
execve (command, parameters, 0); /* execute command */

}
}

Chapter 1 30CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Monolithic OS structure

Main
procedure

Service
routines

Utility
routines

Chapter 1 31CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Virtual machines

First widely used in VM/370 with CMS
Available today in VMware

Allows users to run any x86-based OS on top of Linux or NT

“Guest” OS can crash without harming underlying OS
Only virtual machine fails—rest of underlying OS is fine

“Guest” OS can even use raw hardware
Virtual machine keeps things separated

Bare hardware

Linux

VMware

Linux

App1 App2 App3

VMware VMware

Windows NT FreeBSD
I/O instructions

System calls

Calls to simulate I/O

“Real” I/O instructions

Chapter 1 32CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Microkernel

Client
process

Process
server

Terminal
server

Client
process

File
server

Memory
server

… User mode

Kernel mode

Microkernels (client-server)

Processes (clients and OS servers) don’t share memory
Communication via message-passing
Separation reduces risk of “byzantine” failures

Examples include Mach

Chapter 1 33CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Metric units

Exa1,000,000,000,000,000,0001018atto0.00000000000000000110-18

Peta1,000,000,000,000,0001015femto0.00000000000000110-15

Tera1,000,000,000,0001012pico0.00000000000110-12

Giga1,000,000,000109nano0.00000000110-9

Mega1,000,000106micro0.00000110-6

Kilo1,000103milli0.00110-3

PrefixNumberExp.PrefixNumberExp.

