CS 1550:

‘| Introduction to Operating Systems

Prof. Ahmed Amer

amer@cs.pitt.edu
http://www.cs.pitt.edu/~amer/cs1550

Chapter 1

‘| Class outline

ntroduction, concepts, review & historical
perspective

Processes
Synchronization
Scheduling
Deadlock

Memory management, address trandlation, and
virtual memory

Operating system management of 1/O
File systems

Security & protection

Distributed systems (as time permits)

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1

‘| Overview: Chapter 1

= What is an operating system, anyway?
= Operating systems history

= The zoo of modern operating systems
= Review of computer hardware

= Operating system concepts

= Operating system structure
User interface to the operating system
Anatomy of a system call

B Rl
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 3

"W What is an operating system?

= A program that runs on the “raw” hardware and supports
Resource Abstraction
Resource Sharing
= Abstracts and standardizes the interface to the user across
different types of hardware
Virtual machine hides the messy details which must be performed
= Manages the hardware resources
Each program gets time with the resource
Each program gets space on the resource

= May have potentially conflicting goals:
Use hardware efficiently
Give maximum performance to each user

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 4

"8t Operating system timeline

= First generation: 1945 — 1955
V acuum tubes
Plug boards

= Second generation: 1955 — 1965
Transistors
Batch systems

= Third generation: 1965 — 1980
Integrated circuits
Multiprogramming

= Fourth generation: 1980 — present
Large scale integration
Personal computers

= Next generation: 7?77
Systems connected by high-speed networks?
Wide area resource management?

B Rl
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 5 \

"SI First generation: direct input

= Runonejob at atime
Enter it into the computer (might require rewiring!)
Run it
Record the results

= Problem: lots of wasted computer time!
Computer was idle during first and last steps
Computers were very expensive!

= Goal: make better use of an expensive commodity:

computer time

B Rl
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 6 \

"M Second generation: batch systems

Tape System
drive Input tape Qutput

tape
2 2 8
oS o[ol
(LT

7094

Card

1]
(R

1401

1401

= Bring cardsto 1401

= Read cards onto input tape

= Put input tape on 7094

= Perform the computation, writing results to output tape
= Put output tape on 1401, which prints output

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 7

Structure of a typical 2nd generation job

Datafor
program

$END

FORTRAN
program

AFORTRAN
$JOB, 10,6610802, ETHAN MILLER

B N
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 8 :

‘| Spooling

= Original batch systems used tape drives

= Later batch systems used disks for buffering
Operator read cards onto disk attached to the computer
Computer read jobs from disk
Computer wrote job results to disk
Operator directed that job results be printed from disk

= Disks enabled ssmultaneous peripheral operation on-
line (spooling)

Computer overlapped I/0 of one job with execution of
another

Better utilization of the expensive CPU
Still only one job active at any given time

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 9

Memory
partitions

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

‘ Third generation: multiprogramming

Multiple jobs in memory

= Protected from one another
Operating system protected
from each job as well
Resources (time, hardware)
split between jobs
Still not interactive

= User submitsjob

= Computer runsit

= User gets results minutes
(hours, days) later

Chapter 1 10

"Mt Timesharing

= Multiprogramming allowed several jobs to be active
at onetime
Initially used for batch systems
Cheaper hardware terminals -> interactive use

= Computer use got much cheaper and easier
No more “priesthood”
Quick turnaround meant quick fixes for problems

B Rl
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 11 \

‘| Types of modern operating systems

= Mainframe operating systems. MV S

= Server operating systems. FreeBSD, Solaris

= Multiprocessor operating systems. Cellular IRIX

= Personal computer operating systems. Windows,
Unix

= Real-time operating systems. VxWorks

= Embedded operating systems

= Smart card operating systems

— Some operating systems can fit into more than one
category

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 12 '3-; 4

Components of a simple PC

Computer internals
(inside the “box”)

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 13

CPU Internals

Pipelined CPU Superscalar CPU

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 14

"N Storage pyramid

Capacity Access latency
| <1kB Registers 1ns Better
1 MB / Cache (SRAM) \ 2-5ns
256 MB / Main memory (DRAM) \ 50 ns
40 GB Magnetic disk 5ms
Better > 1 TB Magnetic tape 50 sec

= Goal: really large memory with very low latency
Latencies are smaller at the top of the hierarchy
Capacities are larger at the bottom of the hierarchy
= Solution: move data between levels to create illusion of large
memory with low latency

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 15

Disk drive structure

= Datastored on surfaces
= Up to two surfaces per platter
= One or more platters per disk

= Datain concentric tracks

= Tracks broken into sectors
= 256B-1KB per sector track

= Cylinder: corresponding
tracks on all surfaces

= Dataread and written by
heads

= Actuator moves heads
= Heads move in unison

sector

platter
cylinder —» =

surfaces

spindle
actuator

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 16

N Memory

Address
0x2 fiff

0x2b000

0x2 7t

0x23000

Ox1dfft

User program
and data

User program
and data

Operating
system

Limit

Base

Address

0x2 fiff
0x2d000

0x2bfff
0x29000

0x24 fff
0x23000

Ox1dfft

User data

User data

User program

Operating
system

= Single base/limit pair: set for each process

= Two base/limit registers. one for program, one for data

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Chapter 1

Limit,

Limit,
Base,

Anatomy of a device request

Instruction,,
Instruction,, ,

1: Interrupt

: Return

= Left: sequence as seen by hardware 2 Processinterrupt
= Request sent to controller, then to disk
= Disk responds, signals disk controller which tells interrupt controller
= Interrupt controller notifies CPU

= Right: interrupt handling (software point of view)

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 18

‘| Operating systems concepts

= Many of these should be familiar to Unix users...

= Processes (and trees of processes)

= Deadlock

= File systems & directory trees

= Pipes

= We'll cover al of these in more depth later on, but
1" s useful to have some basic definitions now

B Rl
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 19 \

- Processes

= Process. program in execution

Address space (memory) the
program can use
State (registers, including

program counter & stack

pointer)
e e G = OSkeepstrack of all processesin
aprocess table

s Processes can create other
processes

Process tree tracks these
relationships

A istheroot of thetree

A created three child processes:
B,C,andD

C created two child processes. E
and F

D created one child process. G

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 20

"8 Inside a (Unix) process

OX7fffffff s Processes have three
Stack segments
@ Text: program code

Data: program data
= Statically declared variables

= Areas dlocated by malloc()
or new

Stack
s Automatic variables

Data = Procedure call information

= Address space growth
Text: doesn’t grow

Text Data: grows “up”

Stack: grows “down”

0

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 21

Deadlock

Actua deadlock

Potential deadlock

N
N

Chapter 1

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

"8 Hierarchical file systems

Root directory

< /\5

bin = \
& faculty grads
s ps cp csh / \ / ~
elm sbrandt kag amerd
classes research
stuff stuff

B el
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 23 \

Interprocess communication

= Processes want to exchange information with each other

= Many waysto do this, including
= Network
= Pipe (specid file): A writesinto pipe, and B reads from it

s PN
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 24

-

System calls

= Programs want the OS to perform a service
Access afile
Create a process
Others...

= Accomplished by system call
Program passes relevant information to OS

OS performs the service if
= TheOSisabletodo so
= Theserviceis permitted for this program at thistime
OS checks information passed to make sure it’s OK
= Don't want programs reading data into other programs’ memory!

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 25

W Making a system call

Oxffffffff

User <
space

Kerne
space <
(09

~

0

Library
(read call)
Return to caller
Trap to kernel
3| Trap codein register
5 8
4 \| Increment SP 9 7
Call read
1| Push arguments
User
Y 5 6/ syscal code
Dispatch—; —> handler

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

System call:
read(fd,buffer,length)

Program pushes arguments,
callslibrary

Library setsup trap, calls
OS

OS handles system call
Control returnsto library

Library returns to user
program

Chapter 1 26

-

System calls for files & directories

Call

Description

fd = open(name,how)

Open afilefor reading and/or writing

s = close(fd)

Close an open file

n = read(fd,buffer,size)

Read datafrom afile into a buffer

n = write(fd,buffer,size)

Write datafrom a buffer into afile

s = Iseek(fd,offset,whence)

Move the “current” pointer for afile

s = stat(name,&buffer)

Get afile s status information (in buffer)

s = mkdir(hame,mode)

Create anew directory

s = rmdir(name)

Remove a directory (must be empty)

s = link(namel,name2)

Create anew entry (name2) that pointsto the
same object as namel

s = unlink(name)

Remove name as alink to an object (deletes
the object if name was the only link to it)

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

$
AT INC.

Chapter 1 27

"8t More system calls

Call

Description

pid = fork()

Create achild processidentical to the
parent

pid=waitpid(pid,&statloc,options)

Wait for achild to terminate

S = execve(name,argv,environp)

Replace aprocess coreimage

exit(status)

Terminate process execution and return
status

s = chdir(dirname)

Change the working directory

s = chmod(name,mode)

Change afile s protection bits

s = kill(pid,signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since 1 Jan 1970

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 28

"8 A simple shell

while (TRUE) { [* repeat forever */
type_prompt(); [* display prompt */
read_command (command, parameters) /[* input from terminal */
if (fork() !=0) { [* fork off child process */
[* Parent code */
waitpid(-1, &status, 0); [* wait for child to exit */
} else {
[* Child code */
execve (command, parameters, 0); /* execute command */
}
}

B N
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 29 \

Monolithic OS structure

Main
procedure

Service
routines

Utility
routines

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 30

" Virtual machines

APP, | App, | App;
System caIIS"""W’ Linux Windows NT FreeBSD
/O instructions | ’i, VMware VMware VMware

Callsto simulate /O ’L’ Linux

“Red” /O instructions |~ ’L

Bare hardware

= First widely used in VM/370 with CM S
= Availabletoday in VMware
Allows usersto run any x86-based OS on top of Linux or NT
= “Guest” OS can crash without harming underlying OS
Only virtual machine fails—rest of underlying OSisfine
= “Guest” OS can even use raw hardware
Virtual machine keeps things separated

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 31

Microkernels (client-server)

Process | Terminal File | Memory
server server | T | server server

<
Microkernel / ~ Kernel mode

~ User mode

= Processes (clients and OS servers) don’t share memory
= Communication via message-passing
= Separation reduces risk of “byzantine” failures

= Examplesinclude Mach

CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 32

"l Metric units

EXp. Number Prefix | EXp. Number Prefix
103 | 0.001 milli | 10° 1,000 | Kilo
106 | 0.000001 micro 106 1,000,000 | M ega
10° | 0.000000001 nano 10° 1,000,000,000 | Giga
10-12 | 0.000000000001 pico 1012 1,000,000,000,000 | Tera
10-15 | 0.000000000000001 femto 1015 1,000,000,000,000,000 | Peta
10-18 | 0.000000000000000001 | gtto 1018 1,000,000,000,000,000,000 | Exa

B el
CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Chapter 1 33 \

