
Chapter 6: File Systems

Chapter 6 2CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File systems

n Files
n Directories & naming
n File system implementation
n Example file systems

Chapter 6 3CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Long-term information storage

n Must store large amounts of data
n Gigabytes -> terabytes -> petabytes

n Stored information must survive the termination of
the process using it
n Lifetime can be seconds to years
n Must have some way of finding it!

n Multiple processes must be able to access the
information concurrently

Chapter 6 4CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Naming files

n Important to be able to find files after they’re created
n Every file has at least one name
n Name can be

n Human-accessible: “foo.c”, “my photo”, “Go Panthers!”, “Go Banana
Slugs!”

n Machine-usable: 4502, 33481
n Case may or may not matter

n Depends on the file system
n Name may include information about the file’s contents

n Certainly does for the user (the name should make it easy to figure out
what’s in it!)

n Computer may use part of the name to determine the file type

Chapter 6 5CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Typical file extensions

Chapter 6 6CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File structures

Sequence of bytes Sequence of records

1 byte

1 record

12A 101 111

sab wm cm avg ejw sab elm br

S02 F01 W02

Tree

Chapter 6 7CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File types

Executable
file

Archive

Chapter 6 8CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Accessing a file

n Sequential access
n Read all bytes/records from the beginning
n Cannot jump around

n May rewind or back up, however
n Convenient when medium was magnetic tape
n Often useful when whole file is needed

n Random access
n Bytes (or records) read in any order
n Essential for database systems
n Read can be …

n Move file marker (seek), then read or …
n Read and then move file marker

Chapter 6 9CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File attributes

Chapter 6 10CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File operations

n Create: make a new file
n Delete: remove an existing

file
n Open: prepare a file to be

accessed
n Close: indicate that a file is

no longer being accessed
n Read: get data from a file
n Write: put data to a file

n Append: like write, but only
at the end of the file

n Seek: move the “current”
pointer elsewhere in the file

n Get attributes: retrieve
attribute information

n Set attributes: modify
attribute information

n Rename: change a file’s
name

Chapter 6 11CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Using file system calls

Chapter 6 12CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Using file system calls, continued

Chapter 6 13CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Memory-mapped files

n Segmented process before mapping files into its address
space

n Process after mapping
n Existing file abc into one segment
n Creating new segment for xyz

Program
text

Data

Before mapping

Program
text

Data

After mapping

abc
xyz

Chapter 6 14CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

More on memory-mapped files

n Memory-mapped files are a convenient abstraction
n Example: string search in a large file can be done just as

with memory!
n Let the OS do the buffering (reads & writes) in the virtual

memory system
n Some issues come up…

n How long is the file?
n Easy if read-only
n Difficult if writes allowed: what if a write is past the end of file?

n What happens if the file is shared: when do changes
appear to other processes?

n When are writes flushed out to disk?
n Clearly, easier to memory map read-only files…

Chapter 6 15CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Directories

n Naming is nice, but limited
n Humans like to group things together for

convenience
n File systems allow this to be done with directories

(sometimes called folders)
n Grouping makes it easier to

n Find files in the first place: remember the enclosing
directories for the file

n Locate related files (or just determine which files are
related)

Chapter 6 16CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Single-level directory systems

n One directory in the file system
n Example directory

n Contains 4 files (foo, bar, baz, blah)
n owned by 3 different people: A, B, and C (owners shown in red)

n Problem: what if user B wants to create a file called foo?

Root
directory

A
foo

A
bar

B
baz

C
blah

Chapter 6 17CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Two-level directory system

n Solves naming problem: each user has her own directory
n Multiple users can use the same file name
n By default, users access files in their own directories
n Extension: allow users to access files in others’ directories

Root
directory

A
foo

A
bar

B
foo

B
baz

A B C

C
bar

C
foo

C
blah

Chapter 6 18CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Hierarchical directory system
Root

directory

A
foo

A
Mom

B
foo

B
foo.tex

A B C

C
bar

C
foo

C
blah

A
Papers

A
Photos

A
Family

A
sunset

A
sunset

A
os.tex

A
kids

B
Papers

B
foo.ps

Chapter 6 19CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Unix directory tree

Chapter 6 20CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Operations on directories

n Create: make a new
directory

n Delete: remove a directory
(usually must be empty)

n Opendir: open a directory to
allow searching it

n Closedir: close a directory
(done searching)

n Readdir: read a directory
entry

n Rename: change the name
of a directory
n Similar to renaming a file

n Link: create a new entry in
a directory to link to an
existing file

n Unlink: remove an entry in
a directory
n Remove the file if this is the

last link to this file

Chapter 6 21CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File system implementation issues

n How are disks divided up into file systems?
n How does the file system allocate blocks to files?
n How does the file system manage free space?
n How are directories handled?
n How can the file system improve…

n Performance?
n Reliability?

Chapter 6 22CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Carving up the disk

Master
boot record

Partition table

Partition 1 Partition 2 Partition 3 Partition 4

Entire disk

Boot
block

Super
block

Free space
management

Index
nodes Files & directories

Chapter 6 23CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

A B C D E F

A Free C Free E F

Contiguous allocation for file blocks

n Contiguous allocation requires all blocks of a file to be
consecutive on disk

n Problem: deleting files leaves “holes”
n Similar to memory allocation issues
n Compacting the disk can be a very slow procedure…

Chapter 6 24CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Contiguous allocation

n Data in each file is stored in
consecutive blocks on disk

n Simple & efficient indexing
n Starting location (block #) on disk

(start)
n Length of the file in blocks

(length)
n Random access well-supported
n Difficult to grow files

n Must pre-allocate all needed space
n Wasteful of storage if file isn’t

using all of the space
n Logical to physical mapping is easy

blocknum = (pos / 1024)
+ start;
offset_in_block = pos %
1024;

Start=5
Length=2902

0 1 2 3

4 5 6 7

8 9 10 11

Chapter 6 25CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Linked allocation

n File is a linked list of disk
blocks
n Blocks may be scattered

around the disk drive
n Block contains both pointer

to next block and data
n Files may be as long as

needed
n New blocks are allocated as

needed
n Linked into list of blocks in

file
n Removed from list (bitmap)

of free blocks

0 1 2 3

4 5 6 7

8 9 10 11

Start=9
End=4
Length=2902

Start=3
End=6
Length=1500

0

x

4 6

x

Chapter 6 26CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Finding blocks with linked allocation

n Directory structure is simple
n Starting address looked up from directory
n Directory only keeps track of first block (not others)

n No wasted space - all blocks can be used
n Random access is difficult: must always start at first block!
n Logical to physical mapping is done by

block = start;
offset_in_block = pos % 1020;
for (j = 0; j < pos / 1020; j++) {
block = block->next;

}
n Assumes that next pointer is stored at end of block
n May require a long time for seek to random location in file

Chapter 6 27CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

A

B

40
1
2

-23
-24

5
36
-17
-18
09
-110
-111
-112
-113
-114
-115

Linked allocation using a RAM-based table

n Links on disk are slow
n Keep linked list in memory
n Advantage: faster
n Disadvantages

n Have to copy it to disk at
some point

n Have to keep in-memory and
on-disk copy consistent

-1

-1
-1

Chapter 6 28CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Using a block index for allocation

n Store file block addresses in
an array
n Array itself is stored in a disk

block
n Directory has a pointer to this

disk block
n Non-existent blocks indicated

by -1
n Random access easy
n Limit on file size?

0 1 2 3

4 5 6 7

8 9 10 11

grades 4 4802
Name index size

6
9
7
0
8

Chapter 6 29CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Finding blocks with indexed allocation

n Need location of index table: look up in directory
n Random & sequential access both well-supported:

look up block number in index table
n Space utilization is good

n No wasted disk blocks (allocate individually)
n Files can grow and shrink easily
n Overhead of a single disk block per file

n Logical to physical mapping is done by
block = index[block % 1024];
offset_in_block = pos % 1024;

n Limited file size: 256 pointers per index block, 1 KB
per file block -> 256 KB per file limit

Chapter 6 30CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Larger files with indexed allocation

n How can indexed allocation allow files larger than a single
index block?

n Linked index blocks: similar to linked file blocks, but using
index blocks instead

n Logical to physical mapping is done by
index = start;
blocknum = pos / 1024;
for (j = 0; j < blocknum /255); j++) {
index = index->next;

}
block = index[blocknum % 255];
offset_in_block = pos % 1024;

n File size is now unlimited
n Random access slow, but only for very large files

Chapter 6 31CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Two-level indexed allocation

n Allow larger files by creating an index of index blocks
n File size still limited, but much larger
n Limit for 1 KB blocks = 1 KB * 256 * 256 = 226 bytes = 64 MB

n Logical to physical mapping is done by
blocknum = pos / 1024;
index = start[blocknum / 256)];
block = index[blocknum % 256]
offset_in_block = pos % 1024;
n Start is the only pointer kept in the directory
n Overhead is now at least two blocks per file

n This can be extended to more than two levels if larger files
are needed...

Chapter 6 32CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Block allocation with extents

n Reduce space consumed by index pointers
n Often, consecutive blocks in file are sequential on disk
n Store <block,count> instead of just <block> in index
n At each level, keep total count for the index for efficiency

n Lookup procedure is:
n Find correct index block by checking the starting file offset for each

index block
n Find correct <block,count> entry by running through index block,

keeping track of how far into file the entry is
n Find correct block in <block,count> pair

n More efficient if file blocks tend to be consecutive on disk
n Allocating blocks like this allows faster reads & writes
n Lookup is somewhat more complex

Chapter 6 33CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Managing free space: bit vector

n Keep a bit vector, with one entry per file block
n Number bits from 0 through n-1, where n is the number of file blocks

on the disk
n If bit[j] == 0, block j is free
n If bit[j] == 1, block j is in use by a file (for data or index)

n If words are 32 bits long, calculate appropriate bit by:
wordnum = block / 32;
bitnum = block % 32;

n Search for free blocks by looking for words with bits unset
(words != 0xffffffff)

n Easy to find consecutive blocks for a single file
n Bit map must be stored on disk, and consumes space

n Assume 4 KB blocks, 8 GB disk => 2M blocks
n 2M bits = 221 bits = 218 bytes = 256KB overhead

Chapter 6 34CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Managing free space: linked list

n Use a linked list to manage free blocks
n Similar to linked list for file allocation
n No wasted space for bitmap
n No need for random access unless we want to find

consecutive blocks for a single file
n Difficult to know how many blocks are free unless

it’s tracked elsewhere in the file system
n Difficult to group nearby blocks together if they’re

freed at different times
n Less efficient allocation of blocks to files
n Files read & written more because consecutive blocks not

nearby

Chapter 6 35CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Issues with free space management

n OS must protect data structures used for free space
management

n OS must keep in-memory and on-disk structures consistent
n Update free list when block is removed: change a pointer in the

previous block in the free list
n Update bit map when block is allocated

n Caution: on-disk map must never indicate that a block is free when it’s
part of a file

n Solution: set bit[j] in free map to 1 on disk before using block[j] in a file
and setting bit[j] to 1 in memory

n New problem: OS crash may leave bit[j] == 1 when block isn’t actually
used in a file

n New solution: OS checks the file system when it boots up…

n Managing free space is a big source of slowdown in file
systems

Chapter 6 36CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

What’s in a directory?

n Two types of information
n File names
n File metadata (size, timestamps, etc.)

n Basic choices for directory information
n Store all information in directory

n Fixed size entries
n Disk addresses and attributes in directory entry

n Store names & pointers to index nodes (i-nodes)

games attributes
mail attributes
news attributes

research attributes

games
mail
news

research

attributes

attributes

attributes

attributesStoring all information
in the directory

Using pointers to
index nodes

Chapter 6 37CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Directory structure

n Structure
n Linear list of files (often itself stored in a file)

n Simple to program
n Slow to run
n Increase speed by keeping it sorted (insertions are slower!)

n Hash table: name hashed and looked up in file
n Decreases search time: no linear searches!
n May be difficult to expand
n Can result in collisions (two files hash to same location)

n Tree
n Fast for searching
n Easy to expand
n Difficult to do in on-disk directory

n Name length
n Fixed: easy to program
n Variable: more flexible, better for users

Chapter 6 38CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Handling long file names in a directory

Chapter 6 39CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Sharing files
Root

directory

A
foo

?
???

B
foo

A B C

C
bar

C
foo

C
blah

A
Papers

A
Photos

A
Family

A
sunset

A
sunset

A
os.tex

A
kids

B
Photos

B
lake

Chapter 6 40CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Solution: use links

n A creates a file, and inserts into her directory
n B shares the file by creating a link to it
n A unlinks the file

n B still links to the file
n Owner is still A (unless B explicitly changes it)

a.tex

Owner: A
Count: 1

a.tex

Owner: A
Count: 2

b.tex

Owner: A
Count: 1

b.tex

A A B B

Chapter 6 41CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Managing disk space

n Dark line (left hand scale) gives data rate of a disk
n Dotted line (right hand scale) gives disk space efficiency
n All files 2KB

Block size

Chapter 6 42CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Disk quotas

Chapter 6 43CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File that has
not changed

Backing up a file system

n A file system to be dumped
n Squares are directories, circles are files
n Shaded items, modified since last dump
n Each directory & file labeled by i-node number

Chapter 6 44CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Bitmaps used in a file system dump

Chapter 6 45CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Checking the file system for consistency

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files

Chapter 6 46CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File system cache

n Many files are used repeatedly
n Option: read it each time from disk
n Better: keep a copy in memory

n File system cache
n Set of recently used file blocks
n Keep blocks just referenced
n Throw out old, unused blocks

n Same kinds of algorithms as for virtual memory
n More effort per reference is OK: file references are a lot less

frequent than memory references
n Goal: eliminate as many disk accesses as possible!

n Repeated reads & writes
n Files deleted before they’re ever written to disk

Chapter 6 47CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

File block cache data structures

Chapter 6 48CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Grouping data on disk

Log Structured File Systems
n Log structured (or journaling) file systems record each

metadata update to the file system as a transaction
n All transactions are written to a log

n A transaction is considered committed once it is written to the
log (sequentially)

n Sometimes to a separate device or section of disk
n However, the file system may not yet be updated

n The transactions in the log are asynchronously written to the file
system structures
n When the file system structures are modified, the transaction

is removed from the log
n If the file system crashes, all remaining transactions in the log

must still be performed
n Faster recovery from crash, removes chance of inconsistency of

metadata

Chapter 6 50CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Log-structured file systems

n Trends in disk & memory
n Faster CPUs
n Larger memories

n Result
n More memory à disk caches can also be larger
n Increasing number of read requests can come from cache
n Thus, most disk accesses will be writes

n LFS structures entire disk as a log
n All writes initially buffered in memory
n Periodically write these to the end of the disk log
n When file opened, locate i-node, then find blocks

n Issue: what happens when blocks are deleted?

Chapter 6 51CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

•
•

•
•

•
Direct pointers...

Unix Fast File System indexing scheme

inode

data

data
data

data
data

data
data

data

...

...

...

...
dataprotection mode

owner & group
timestamps

size
block count

single indirect

double indirect

triple indirect

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

link count

Chapter 6 52CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

More on Unix FFS

n First few block pointers kept in directory
n Small files have no extra overhead for index blocks
n Reading & writing small files is very fast!

n Indirect structures only allocated if needed
n For 4 KB file blocks (common in Unix), max file sizes are:

n 48 KB in directory (usually 12 direct blocks)
n 1024 * 4 KB = 4 MB of additional file data for single indirect
n 1024 * 1024 * 4 KB = 4 GB of additional file data for double indirect
n 1024 * 1024 * 1024 * 4 KB = 4 TB for triple indirect

n Maximum of 5 accesses for any file block on disk
n 1 access to read inode & 1 to read file block
n Maximum of 3 accesses to index blocks
n Usually much fewer (1-2) because inode in memory

Chapter 6 53CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Directories in FFS

n Directories in FFS are just
special files
n Same basic mechanisms
n Different internal structure

n Directory entries contain
n File name
n I-node number

n Other Unix file systems
have more complex
schemes
n Not always simple files…

inode number
record length
name length

name

inode number
record length
name length

name

Directory

Three Major Layers of NFS Architecture

n UNIX file-system interface (based on the open, read, write, and close calls, and file
descriptors)

n Virtual File System (VFS) layer – distinguishes local files from remote ones, and local
files are further distinguished according to their file-system types
n The VFS activates file-system-specific operations to handle local requests

according to their file-system types
n Calls the NFS protocol procedures for remote requests

n NFS service layer – bottom layer of the architecture
n Implements the NFS protocol

Schematic View of NFS Architecture

NFS Path-Name Translation

n Performed by breaking the path into component names and performing a separate NFS
lookup call for every pair of component name and directory vnode

n To make lookup faster, a directory name lookup cache on the client’s side holds the
vnodes for remote directory names

NFS Remote Operations
n Nearly one-to-one correspondence between regular UNIX system calls and the NFS

protocol RPCs (except opening and closing files)

n NFS adheres to the remote-service paradigm, but employs buffering and caching
techniques for the sake of performance

n File-blocks cache – when a file is opened, the kernel checks with the remote server
whether to fetch or revalidate the cached attributes
n Cached file blocks are used only if the corresponding cached attributes are up to

date

n File-attribute cache – the attribute cache is updated whenever new attributes arrive
from the server

n Clients do not free delayed-write blocks until the server confirms that the data have
been written to disk

Example: WAFL File System

n Used on Network Appliance “Filers” – distributed file system appliances

n “Write-anywhere file layout”

n Serves up NFS, CIFS, http, ftp

n Random I/O optimized, write optimized
n NVRAM for write caching

n Similar to Berkeley Fast File System, with extensive modifications

The WAFL File Layout

Protection

n File owner/creator should be able to manage
controlled access:
n What can be done
n By whom
n But never forget physical security

n Types of access
n Read, Write, Execute, Append, Delete, List
n Others can include renaming, copying, editing, etc
n System calls then check for valid rights before allowing

operations: Another reason for open()
n Many solutions proposed and implemented

Access Lists and Groups

n Mode of access: read, write, execute
n Three classes of users

RWX
a) owner access 7 Þ 1 1 1

RWX
b) group access 6 Þ 1 1 0

RWX
c) public access 1 Þ 0 0 1

n Ask manager to create a group (unique name),
say G, and add some users to the group.

n For a particular file (say game) or subdirectory,
define an appropriate access.

owner group public

chmod 761 game
Attach a group to a file

chgrp G game

Chapter 6 62CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

CD-ROM file system

Chapter 6 63CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Directory entry in MS-DOS

Chapter 6 64CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

MS-DOS File Allocation Table

Block size FAT-12 FAT-16 FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 TB
8 KB 512 MB 2 TB
16 KB 1024 MB 2 TB
32 KB 2048 MB 2 TB

Chapter 6 65CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Bytes

Windows 98 directory entry & file name

Checksum

Chapter 6 66CS 1550, cs.pitt.edu
(originaly modified by Ethan
L. Miller and Scott A. Brandt)

Storing a long name in Windows 98

n Long name stored in Windows 98 so that it’s backwards
compatible with short names
n Short name in “real” directory entry
n Long name in “fake” directory entries: ignored by older systems

n OS designers will go to great lengths to make new systems
work with older systems…

