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File systems

n Files
n Directories & naming
n File system implementation
n Example file systems
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Long-term information storage

n Must store large amounts of data
n Gigabytes -> terabytes -> petabytes

n Stored information must survive the termination of 
the process using it
n Lifetime can be seconds to years
n Must have some way of finding it!

n Multiple processes must be able to access the 
information concurrently
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Naming files

n Important to be able to find files after they’re created
n Every file has at least one name
n Name can be

n Human-accessible: “foo.c”, “my photo”, “Go Panthers!”, “Go Banana 
Slugs!”

n Machine-usable: 4502, 33481
n Case may or may not matter

n Depends on the file system
n Name may include information about the file’s contents

n Certainly does for the user (the name should make it easy to figure out 
what’s in it!)

n Computer may use part of the name to determine the file type
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Typical file extensions
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File structures

Sequence of bytes Sequence of records

1 byte

1 record

12A 101 111

sab wm cm avg ejw sab elm br

S02 F01 W02

Tree
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File types

Executable
file

Archive
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Accessing a file

n Sequential access
n Read all bytes/records from the beginning
n Cannot jump around

n May rewind or back up, however
n Convenient when medium was magnetic tape
n Often useful when whole file is needed

n Random access
n Bytes (or records) read in any order
n Essential for database systems
n Read can be …

n Move file marker (seek), then read or …
n Read and then move file marker
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File attributes
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File operations

n Create: make a new file
n Delete: remove an existing 

file
n Open: prepare a file to be 

accessed
n Close: indicate that a file is 

no longer being accessed
n Read: get data from a file
n Write: put data to a file

n Append: like write, but only 
at the end of the file

n Seek: move the “current” 
pointer elsewhere in the file

n Get attributes: retrieve 
attribute information

n Set attributes: modify 
attribute information

n Rename: change a file’s 
name
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Using file system calls
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Using file system calls, continued
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Memory-mapped files

n Segmented process before mapping files into its address 
space

n Process after mapping 
n Existing file abc into one segment 
n Creating new segment for xyz

Program
text

Data

Before mapping

Program
text

Data

After mapping

abc
xyz
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More on memory-mapped files

n Memory-mapped files are a convenient abstraction
n Example: string search in a large file can be done just as 

with memory!
n Let the OS do the buffering (reads & writes) in the virtual 

memory system
n Some issues come up…

n How long is the file?
n Easy if read-only
n Difficult if writes allowed: what if a write is past the end of file?

n What happens if the file is shared: when do changes 
appear to other processes?

n When are writes flushed out to disk?
n Clearly, easier to memory map read-only files…
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Directories

n Naming is nice, but limited
n Humans like to group things together for 

convenience
n File systems allow this to be done with directories

(sometimes called folders)
n Grouping makes it easier to

n Find files in the first place: remember the enclosing 
directories for the file

n Locate related files (or just determine which files are 
related)
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Single-level directory systems

n One directory in the file system
n Example directory

n Contains 4 files (foo, bar, baz, blah)
n owned by 3 different people: A, B, and C (owners shown in red)

n Problem: what if user B wants to create a file called foo?

Root
directory

A
foo

A
bar

B
baz

C
blah
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Two-level directory system

n Solves naming problem: each user has her own directory
n Multiple users can use the same file name
n By default, users access files in their own directories
n Extension: allow users to access files in others’ directories

Root
directory

A
foo

A
bar

B
foo

B
baz

A B C

C
bar

C
foo

C
blah
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Hierarchical directory system
Root

directory

A
foo

A
Mom

B
foo

B
foo.tex

A B C

C
bar

C
foo

C
blah

A
Papers

A
Photos

A
Family

A
sunset

A
sunset

A
os.tex

A
kids

B
Papers

B
foo.ps
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Unix directory tree
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Operations on directories

n Create: make a new 
directory

n Delete: remove a directory 
(usually must be empty)

n Opendir: open a directory to 
allow searching it

n Closedir: close a directory 
(done searching)

n Readdir: read a directory 
entry

n Rename: change the name 
of a directory
n Similar to renaming a file

n Link: create a new entry in 
a directory to link to an 
existing file

n Unlink: remove an entry in 
a directory
n Remove the file if this is the 

last link to this file
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File system implementation issues

n How are disks divided up into file systems?
n How does the file system allocate blocks to files?
n How does the file system manage free space?
n How are directories handled?
n How can the file system improve…

n Performance?
n Reliability?
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Carving up the disk

Master
boot record

Partition table

Partition 1 Partition 2 Partition 3 Partition 4

Entire disk

Boot
block

Super
block

Free space
management

Index
nodes Files & directories
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A B C D E F

A Free C Free E F

Contiguous allocation for file blocks

n Contiguous allocation requires all blocks of a file to be 
consecutive on disk

n Problem: deleting files leaves “holes”
n Similar to memory allocation issues
n Compacting the disk can be a very slow procedure…
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Contiguous allocation

n Data in each file is stored in 
consecutive blocks on disk

n Simple & efficient indexing
n Starting location (block #) on disk 

(start)
n Length of the file in blocks 

(length)
n Random access well-supported
n Difficult to grow files

n Must pre-allocate all needed space
n Wasteful of storage if file isn’t 

using all of the space
n Logical to physical mapping is easy

blocknum = (pos / 1024) 
+ start;
offset_in_block = pos % 
1024;

Start=5
Length=2902

0 1 2 3

4 5 6 7

8 9 10 11
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Linked allocation

n File is a linked list of disk 
blocks
n Blocks may be scattered 

around the disk drive
n Block contains both pointer 

to next block and data
n Files may be as long as 

needed
n New blocks are allocated as 

needed
n Linked into list of blocks in 

file
n Removed from list (bitmap) 

of free blocks

0 1 2 3

4 5 6 7

8 9 10 11

Start=9
End=4
Length=2902

Start=3
End=6
Length=1500

0

x

4 6

x
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Finding blocks with linked allocation

n Directory structure is simple
n Starting address looked up from directory
n Directory only keeps track of first block (not others)

n No wasted space - all blocks can be used
n Random access is difficult: must always start at first block!
n Logical to physical mapping is done by

block = start;
offset_in_block = pos % 1020;
for (j = 0; j < pos / 1020; j++) {
block = block->next;

}
n Assumes that next pointer is stored at end of block
n May require a long time for seek to random location in file 
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A

B

40
1
2

-23
-24

5
36
-17
-18
09
-110
-111
-112
-113
-114
-115

Linked allocation using a RAM-based table

n Links on disk are slow
n Keep linked list in memory
n Advantage: faster
n Disadvantages

n Have to copy it to disk at 
some point

n Have to keep in-memory and 
on-disk copy consistent

-1

-1
-1
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Using a block index for allocation

n Store file block addresses in 
an array
n Array itself is stored in a disk 

block
n Directory has a pointer to this 

disk block
n Non-existent blocks indicated 

by -1
n Random access easy
n Limit on file size?

0 1 2 3

4 5 6 7

8 9 10 11

grades      4 4802
Name index size

6
9
7
0
8
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Finding blocks with indexed allocation

n Need location of index table: look up in directory
n Random & sequential access both well-supported: 

look up block number in index table
n Space utilization is good

n No wasted disk blocks (allocate individually)
n Files can grow and shrink easily
n Overhead of a single disk block per file

n Logical to physical mapping is done by
block = index[block % 1024];
offset_in_block = pos % 1024;

n Limited file size: 256 pointers per index block, 1 KB 
per file block -> 256 KB per file limit



Chapter 6 30CS 1550, cs.pitt.edu 
(originaly modified by Ethan 
L. Miller and Scott A. Brandt)

Larger files with indexed allocation

n How can indexed allocation allow files larger than a single 
index block?

n Linked index blocks: similar to linked file blocks, but using 
index blocks instead

n Logical to physical mapping is done by
index = start;
blocknum = pos / 1024;
for (j = 0; j < blocknum /255); j++) {
index = index->next;

}
block = index[blocknum % 255];
offset_in_block = pos % 1024;

n File size is now unlimited
n Random access slow, but only for very large files
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Two-level indexed allocation

n Allow larger files by creating an index of index blocks
n File size still limited, but much larger
n Limit for 1 KB blocks = 1 KB * 256 * 256 = 226 bytes = 64 MB

n Logical to physical mapping is done by
blocknum = pos / 1024;
index = start[blocknum / 256)];
block = index[blocknum % 256]
offset_in_block = pos % 1024;
n Start is the only pointer kept in the directory
n Overhead is now at least two blocks per file

n This can be extended to more than two levels if larger files 
are needed...
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Block allocation with extents

n Reduce space consumed by index pointers
n Often, consecutive blocks in file are sequential on disk
n Store <block,count> instead of just <block> in index
n At each level, keep total count for the index for efficiency

n Lookup procedure is:
n Find correct index block by checking the starting file offset for each 

index block
n Find correct <block,count> entry by running through index block, 

keeping track of how far into file the entry is
n Find correct block in <block,count> pair

n More efficient if file blocks tend to be consecutive on disk
n Allocating blocks like this allows faster reads & writes
n Lookup is somewhat more complex
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Managing free space: bit vector

n Keep a bit vector, with one entry per file block
n Number bits from 0 through n-1, where n is the number of file blocks 

on the disk
n If bit[j] == 0, block j is free
n If bit[j] == 1, block j is in use by a file (for data or index)

n If words are 32 bits long, calculate appropriate bit by:
wordnum = block / 32;
bitnum = block % 32;

n Search for free blocks by looking for words with bits unset 
(words != 0xffffffff)

n Easy to find consecutive blocks for a single file
n Bit map must be stored on disk, and consumes space

n Assume 4 KB blocks, 8 GB disk => 2M blocks
n 2M bits = 221 bits = 218 bytes = 256KB overhead
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Managing free space: linked list

n Use a linked list to manage free blocks
n Similar to linked list for file allocation
n No wasted space for bitmap
n No need for random access unless we want to find 

consecutive blocks for a single file
n Difficult to know how many blocks are free unless 

it’s tracked elsewhere in the file system
n Difficult to group nearby blocks together if they’re 

freed at different times
n Less efficient allocation of blocks to files
n Files read & written more because consecutive blocks not 

nearby
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Issues with free space management

n OS must protect data structures used for free space 
management

n OS must keep in-memory and on-disk structures consistent
n Update free list when block is removed: change a pointer in the 

previous block in the free list
n Update bit map when block is allocated

n Caution: on-disk map must never indicate that a block is free when it’s 
part of a file

n Solution: set bit[j] in free map to 1 on disk before using block[j] in a file 
and setting bit[j] to 1 in memory

n New problem: OS crash may leave bit[j] == 1 when block isn’t actually 
used in a file

n New solution: OS checks the file system when it boots up…

n Managing free space is a big source of slowdown in file 
systems
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What’s in a directory?

n Two types of information
n File names
n File metadata (size, timestamps, etc.)

n Basic choices for directory information
n Store all information in directory

n Fixed size entries
n Disk addresses and attributes in directory entry

n Store names & pointers to index nodes (i-nodes)

games attributes
mail attributes
news attributes

research attributes

games
mail
news

research

attributes

attributes

attributes

attributesStoring all information
in the directory

Using pointers to
index nodes
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Directory structure

n Structure
n Linear list of files (often itself stored in a file)

n Simple to program
n Slow to run
n Increase speed by keeping it sorted (insertions are slower!)

n Hash table: name hashed and looked up in file
n Decreases search time: no linear searches!
n May be difficult to expand
n Can result in collisions (two files hash to same location)

n Tree
n Fast for searching
n Easy to expand
n Difficult to do in on-disk directory

n Name length
n Fixed: easy to program
n Variable: more flexible, better for users
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Handling long file names in a directory
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Sharing files
Root

directory

A
foo

?
???

B
foo

A B C

C
bar

C
foo

C
blah

A
Papers

A
Photos

A
Family

A
sunset

A
sunset

A
os.tex

A
kids

B
Photos

B
lake
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Solution: use links

n A creates a file, and inserts into her directory
n B shares the file by creating a link to it
n A unlinks the file

n B still links to the file
n Owner is still A (unless B explicitly changes it)

a.tex

Owner: A
Count: 1

a.tex

Owner: A
Count: 2

b.tex

Owner: A
Count: 1

b.tex

A A B B
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Managing disk space

n Dark line (left hand scale) gives data rate of a disk
n Dotted line (right hand scale) gives disk space efficiency
n All files 2KB

Block size
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Disk quotas
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File that has
not changed

Backing up a file system

n A file system to be dumped
n Squares are directories, circles are files
n Shaded items, modified since last dump
n Each directory & file labeled by i-node number
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Bitmaps used in a file system dump
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Checking the file system for consistency

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files
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File system cache

n Many files are used repeatedly
n Option: read it each time from disk
n Better: keep a copy in memory

n File system cache
n Set of recently used file blocks
n Keep blocks just referenced
n Throw out old, unused blocks

n Same kinds of algorithms as for virtual memory
n More effort per reference is OK: file references are a lot less 

frequent than memory references
n Goal: eliminate as many disk accesses as possible!

n Repeated reads & writes
n Files deleted before they’re ever written to disk
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File block cache data structures
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Grouping data on disk



Log Structured File Systems
n Log structured (or journaling) file systems record each 

metadata update to the file system as a transaction
n All transactions are written to a log

n A transaction is considered committed once it is written to the 
log (sequentially)

n Sometimes to a separate device or section of disk
n However, the file system may not yet be updated

n The transactions in the log are asynchronously written to the file 
system structures
n When the file system structures are modified, the transaction 

is removed from the log
n If the file system crashes, all remaining transactions in the log 

must still be performed
n Faster recovery from crash, removes chance of inconsistency of 

metadata
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Log-structured file systems

n Trends in disk & memory
n Faster CPUs
n Larger memories

n Result
n More memory à disk caches can also be larger
n Increasing number of read requests can come from cache
n Thus, most disk accesses will be writes

n LFS structures entire disk as a log
n All writes initially buffered in memory
n Periodically write these to the end of the disk log
n When file opened, locate i-node, then find blocks

n Issue: what happens when blocks are deleted?
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•
•

•
•

•
Direct pointers...

Unix Fast File System indexing scheme

inode

data

data
data

data
data

data
data

data

...

...

...

...
dataprotection mode

owner & group
timestamps

size
block count

single indirect

double indirect

triple indirect

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

link count
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More on Unix FFS

n First few block pointers kept in directory
n Small files have no extra overhead for index blocks
n Reading & writing small files is very fast!

n Indirect structures only allocated if needed
n For 4 KB file blocks (common in Unix), max file sizes are:

n 48 KB in directory (usually 12 direct blocks)
n 1024 * 4 KB = 4 MB of additional file data for single indirect
n 1024 * 1024 * 4 KB = 4 GB of additional file data for double indirect
n 1024 * 1024 * 1024 * 4 KB = 4 TB for triple indirect

n Maximum of 5 accesses for any file block on disk
n 1 access to read inode & 1 to read file block
n Maximum of 3 accesses to index blocks
n Usually much fewer (1-2) because inode in memory
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Directories in FFS

n Directories in FFS are just 
special files
n Same basic mechanisms
n Different internal structure

n Directory entries contain
n File name
n I-node number

n Other Unix file systems 
have more complex 
schemes
n Not always simple files…

inode number
record length
name length

name

inode number
record length
name length

name

Directory



Three Major Layers of NFS Architecture

n UNIX file-system interface (based on the open, read, write, and close calls, and file 
descriptors)

n Virtual File System (VFS) layer – distinguishes local files from remote ones, and local 
files are further distinguished according to their file-system types
n The VFS activates file-system-specific operations to handle local requests 

according to their file-system types 
n Calls the NFS protocol procedures for remote requests

n NFS service layer – bottom layer of the architecture
n Implements the NFS protocol



Schematic View of NFS Architecture 



NFS Path-Name Translation

n Performed by breaking the path into component names and performing a separate NFS 
lookup call for every pair of component name and directory vnode

n To make lookup faster, a directory name lookup cache on the client’s side holds the 
vnodes for remote directory names



NFS Remote Operations
n Nearly one-to-one correspondence between regular UNIX  system calls and the NFS 

protocol RPCs (except opening and closing files)

n NFS adheres to the remote-service paradigm, but employs buffering and caching 
techniques for the sake of performance 

n File-blocks cache – when a file is opened, the kernel checks with the remote server 
whether to fetch or revalidate the cached attributes
n Cached file blocks are used only if the corresponding cached attributes are up to 

date

n File-attribute cache – the attribute cache is updated whenever new attributes arrive 
from the server

n Clients do not free delayed-write blocks until the server confirms that the data have 
been written to disk



Example: WAFL File System

n Used on Network Appliance “Filers” – distributed file system appliances

n “Write-anywhere file layout”

n Serves up NFS, CIFS, http, ftp

n Random I/O optimized, write optimized
n NVRAM for write caching

n Similar to Berkeley Fast File System, with extensive modifications



The WAFL File Layout



Protection

n File owner/creator should be able to manage 
controlled access:
n What can be done
n By whom
n But never forget physical security

n Types of access
n Read, Write, Execute, Append, Delete, List
n Others can include renaming, copying, editing, etc
n System calls then check for valid rights before allowing 

operations: Another reason for open()
n Many solutions proposed and implemented



Access Lists and Groups

n Mode of access:  read, write, execute
n Three classes of users

RWX
a) owner access 7 Þ 1 1 1

RWX
b) group access 6 Þ 1 1 0

RWX
c) public access 1 Þ 0 0 1

n Ask manager to create a group (unique name), 
say G, and add some users to the group.

n For a particular file (say game) or subdirectory, 
define an appropriate access.

owner group public

chmod 761 game
Attach a group to a file

chgrp     G    game
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CD-ROM file system
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Directory entry in MS-DOS
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MS-DOS File Allocation Table

Block size FAT-12 FAT-16 FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 TB
8 KB 512 MB 2 TB
16 KB 1024 MB 2 TB
32 KB 2048 MB 2 TB
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Bytes

Windows 98 directory entry & file name

Checksum
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Storing a long name in Windows 98

n Long name stored in Windows 98 so that it’s backwards 
compatible with short names
n Short name in “real” directory entry
n Long name in “fake” directory entries: ignored by older systems

n OS designers will go to great lengths to make new systems 
work with older systems…


