
Week 5: Deadlock Avoidance and
Prevention
Sherif Khattab

http://www.cs.pitt.edu/~skhattab/cs1550

(slides are from Silberschatz, Galvin and Gagne ©2013)

Administrivia
• Project 1 out and due on 2/21 @11:59pm

2Spring 2018 CS/COE 0445 – Data Structures – Sherif Khattab

Agenda
• System Model
• Deadlock Avoidance
• Deadlock Detection

Deadlock

“When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start up

again until the other has gone.”

• A set of processes is in a deadlocked state when
every process in the set is waiting for an event that
can be caused only by another process in the set

• deadlocked vs. frozen state

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 4

System Model
• System consists of resources
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.
• Each process utilizes a resource as follows:

• request
• use
• release

Necessary Conditions
• Mutual exclusion: only one process at a time can use a

resource
• Hold and wait: a process holding at least one resource

is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is held
by P2, …, Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Resource-Allocation Graph
• A set of vertices V and a set of edges E.
• V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set of all the processes in the
system

• R = {R1, R2, …, Rm}, the set of all resource types in the
system

• request edge – directed edge Pi ® Rj

• assignment edge – directed edge Rj ® Pi

Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Basic Facts
• If graph contains no cycles Þ no deadlock
• If graph contains a cycle Þ

• if only one instance per resource type, then deadlock
• necessary and sufficient condition

• if several instances per resource type, possibility of
deadlock
• necessary condition

How to handle deadlocks?
• Prevention
• Avoidance
• Detection and Recovery
• Ignore(!) (most common due to some sort of risk

analysis)

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 11

Deadlock Avoidance
• System state is defined by

• number of available and allocated resources, and
• the maximum demands of the processes (a priori

knowledge)

• If a system is in safe state Þ no deadlocks

• If a system is in unsafe state
Þ possibility of deadlock

• Avoidance Þ ensure that a system will never enter
an unsafe state.

Resource-Allocation Graph Algorithm
• Suppose that process Pi requests a resource Rj
• The request can be granted only if converting the

request edge to an assignment edge does not result
in the formation of a cycle in the resource allocation
graph

Banker’s Algorithm
• Multiple resource instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to
wait

• When a process gets all its resources it must return
them in a finite amount of time

Data Structures for the Banker’s Algorithm
• Available: Vector of length m. If available[j] = k,

there are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need
k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Checking if the system is in a safe state
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize:
Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi £ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

Resource-Request Algorithm for Process Pi
Requesti = request vector for process Pi. If Requesti
[j] = k then process Pi wants k instances of resource
type Rj

1. If Requesti £ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti £ Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

● If safe Þ the resources are allocated to Pi

● If unsafe Þ Pi must wait, and the old resource-allocation state is
restored

Safe Sequence

A sequence of processes <P1, P2, ..., Pn> is a safe

sequence for the current allocation state if,

• for each Pi, the resource requests that Pi can still make

can be satisfied by the currently available resources plus

the resources held by all processes before it in the

sequence (Pj, with j<i).

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 18

Example of Banker’s Algorithm
• 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max –
Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1,
P3, P4, P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)
• Check that Request £ Available (that is, (1,0,2) £ (3,3,2)) Þ true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0,
P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Detection
• Available: A vector of length m indicates the number

of available resources of each type
• Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each
process

• Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process Pi is requesting k more instances of resource
type Rj.

Detection Algorithm
1. (a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ¹ 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti £ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true (optimistic attitude)
go to step 2

4. If Finish[i] == false, for some i, 1 £ i £ n, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then Pi is deadlocked

Algorithm requires O(m x n2) operations

Example of Detection Algorithm
• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Example (Cont.)
• P2 requests an additional instance of type C

Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4

Detection-Algorithm Usage
• When, and how often, to invoke depends on:

• How often a deadlock is likely to occur?
• How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may
be many cycles in the resource graph and so we
would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

Recovery from Deadlock: Process Termination
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

• In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

Recovery from Deadlock: Resource Preemption
• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart process
for that state

• Starvation – same process may always be picked
as victim
• include number of rollback in cost factor

