

CPU Scheduling

Daniel Mosse

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Histogram of CPU-burst Times

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

First- Come, First-Served (FCFS) Scheduling

<u>Process</u> <u>Burst Time</u>

$$P_1$$
 24 P_2 3 P_3 3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1 \alpha)\tau_n$.

- Commonly, α set to ½
- Preemptive version called shortest-remaining-timefirst

Prediction of the Length of the Next CPU Burst

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution = Aging as time progresses increase the priority of the process

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 4-10 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Performance
 - q large ⇒ FIFO
 - q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes;
 - 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Feedback Queue (by example)

Three queues:

- Q₀ RR; quantum 8 milliseconds
- Q₁ RR; quantum 16 milliseconds
- $Q_2 FCFS$

Scheduling

- A new job enters queue Q₀
 - When it gains CPU, job receives 8 milliseconds
 - If it does not finish in 8 milliseconds, job is moved to queue Q_1
- At Q₁ job receives 16 additional milliseconds
 - If it still does not complete, it is preempted and moved to queue Q₂

Multiple-Processor Scheduling

NUMA

Multiple-Processor Scheduling

- Symmetric multiprocessing (SMP) each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity
 - hard affinity
- Load balancing
 - Contradicts affinity?

Multithreaded Multicore System

Real-Time CPU Scheduling

Conflict phase of dispatch latency: response to event

1. Preemaption of any preespose បង្កោះ in kernel mode

2. Release by low-priority process of resources needed by

Rate Montonic Scheduling

- A priority is assigned based on the inverse of its period
- Shorter periods = higher priority;
- Longer periods = lower priority
- P₁ is assigned a higher priority than P₂.

Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority

Operating System Examples

Linux scheduling

Windows scheduling

Linux Scheduling in Version 2.6.23 +

Scheduling classes

- default: Completely Fair Scheduler (CFS)
- real-time scheduling class (highest priority tasks)
- CFS
 - Quantum based on proportion of CPU time
 - per-task virtual run time in variable vruntime
 - vruntime += t, t is the amount of time it ran
 - Choose the task with the lowest vruntime
 - Normal default priority → virtual run time = actual run time
 - decay factor based on priority of task lower priority is higher decay rate ("bonus")
 - To decide next task to run, scheduler picks task with lowest virtual run time

CFS Performance

- (Red-Black) Binary
 Search Tree, not queue
 - Insert finishing process into queue (n log n)
 - Pointer the lowest: faster...
 - RB tree is self-balancing

- Vruntime calculated based on nice value from -20 to +19
 - Lower value is higher priority; nice is static value
- What happens to I/O bound processes?
- Initialization value? vruntime = min_vruntime

User Mode Scheduling

- Windows 7 added user-mode scheduling (UMS)
 - Applications create and manage threads independent of kernel
 - For large number of threads, much more efficient
 - UMS schedulers come from programming language libraries like
 - C++ Concurrent Runtime (ConcRT) framework
- Linux has P-threads (and other thread packages)
- What happens when one thread blocks?

Algorithm Evaluation

- How to select CPU-scheduling algorithm for an OS?
 - Deterministic
 - Proofs
 - queuing models
 - simulation
 - implementation

Deterministic Evaluation

 Group activity: calculate minimum average waiting time

•	F	C	FS
	_	_	_

- non-preemptive SJF
- RR with quantum=10
- Multilevel Feedback Queue (q0: 8; q1: 16; q2: FCFS)

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_5	12

Simple and fast, but requires exact numbers for input, applies only to those inputs

FCFS is 28ms:

Non-preemptive SJF is 13ms:

RR is 23ms:

Proofs

- Mathematical functions that you want to optimize
 - Metrics: response time, average response time, maximum response time, throughput, ···
 - Optimize: minimize, maximize,
 - Assumptions: very important; realistic? Eg, all jobs available at time t=0
- Example: prove that SJF is optimal with respect to minimizing average response time

Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc
- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc

Little's Formula

- n = average queue length
- W = average waiting time in queue
- λ = average arrival rate into queue
- Little's law in steady state, processes leaving queue must equal processes arriving, thus:

$$n = \lambda \times W$$

- Valid for any scheduling algorithm and arrival distribution
- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds

Simulations

- Queueing models limited
- Simulations more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - Random number generator according to probabilities
 - Distributions defined mathematically or empirically
 - Trace tapes record sequences of real events in real systems
 - Event-driven or Time-Driven simulations

Implementation

- Even simulations have limited accuracy
- "Just" implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- Most flexible schedulers can be modified per-site or per-system
 - Or APIs to modify priorities
- But (again) environments vary and "can be modified" does not mean it's easy ©