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Basic Concepts 
•  Maximum CPU utilization 

obtained with multiprogramming 
•  CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 
CPU execution and I/O wait 

•  CPU burst followed by I/O burst 
•  CPU burst distribution is of main 

concern 
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Histogram of CPU-burst Times 
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Scheduling Criteria 
•  CPU utilization – keep the CPU as busy as possible 
•  Throughput – # of processes that complete their 

execution per time unit 
•  Turnaround time – amount of time to execute a 

particular process 
•  Waiting time – amount of time a process has been 

waiting in the ready queue 
•  Response time – amount of time it takes from when 

a request was submitted until the first response is 
produced, not output  (for time-sharing environment) 
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First- Come, First-Served (FCFS) Scheduling 

  Process  Burst Time   
   P1  24 
   P2  3 
   P3   3  

•  Suppose that the processes arrive in the order: P1 , 
P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 
 

 

•  Waiting time for P1  = 0; P2  = 24; P3 = 27 
•  Average waiting time:  (0 + 24 + 27)/3 = 17 

P P P1 2 3

0 24 3027
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Determining Length of Next CPU Burst 
•  Can only estimate the length – should be similar to the 

previous one 
•  Then pick process with shortest predicted next CPU burst 

•  Can be done by using the length of previous CPU bursts, 
using exponential averaging 

•  Commonly, α set to ½ 
•  Preemptive version called shortest-remaining-time-

first 
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Prediction of the Length of the Next CPU Burst 
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Priority Scheduling 
•  A priority number (integer) is associated with each process 

•  The CPU is allocated to the process with the highest priority 
(smallest integer ≡ highest priority) 
•  Preemptive 
•  Nonpreemptive 

•  SJF is priority scheduling where priority is the inverse of 
predicted next CPU burst time 

•  Problem ≡ Starvation – low priority processes may never 
execute 

•  Solution ≡ Aging – as time progresses increase the priority of 
the process 
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Round Robin (RR) 
•  Each process gets a small unit of CPU time (time 

quantum q), usually 4-10 milliseconds.  After this 
time has elapsed, the process is preempted and 
added to the end of the ready queue. 

•  If there are n processes in the ready queue and the 
time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once.  
No process waits more than (n-1)q time units. 

•  Performance 
•  q large ⇒ FIFO 
•  q small ⇒ q must be large with respect to context switch, 

otherwise overhead is too high 
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 9 



Multilevel Queue 
•  Ready queue is partitioned into separate queues, eg: 

•  foreground (interactive) 
•  background (batch) 

•  Process permanently in a given queue 

•  Each queue has its own scheduling algorithm: 
•  foreground – RR 
•  background – FCFS 

•  Scheduling must be done between the queues: 
•  Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 
•  Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes;  
•  80% to foreground in RR 
•  20% to background in FCFS  
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Multilevel Feedback Queue (by example) 
•  Three queues:  

•  Q0 – RR; quantum 8 milliseconds 
•  Q1 – RR; quantum 16 milliseconds 
•  Q2 – FCFS 

•  Scheduling 
•  A new job enters queue Q0 

•  When it gains CPU, job receives 8 milliseconds 
•  If it does not finish in 8 milliseconds, job is moved to queue 

Q1 
•  At Q1 job receives 16 additional milliseconds 

•  If it still does not complete, it is preempted and moved to 
queue Q2 
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Multiple-Processor Scheduling 
•  NUMA 
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Multiple-Processor Scheduling 
•  Symmetric multiprocessing (SMP) – each 

processor is self-scheduling, all processes in 
common ready queue, or each has its own private 
queue of ready processes 
•  Currently, most common 

•  Processor affinity – process has affinity for 
processor on which it is currently running 
•  soft affinity 
•  hard affinity 

•  Load balancing 
•  Contradicts affinity? 
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Multithreaded Multicore System 
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Real-Time CPU Scheduling 
•  Conflict phase of dispatch latency: 

1.  Preemption of any process running in kernel mode 
2.  Release by low-priority process of resources needed by 

high-priority processes 
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Rate Montonic Scheduling 
•  A priority is assigned based on the inverse of its 

period 

•  Shorter periods = higher priority; 

•  Longer periods = lower priority 

•  P1 is assigned a higher priority than P2. 
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Earliest Deadline First Scheduling (EDF) 

Priorities are assigned according to deadlines: 
•  the earlier the deadline, the higher the priority 
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Operating System Examples 

•  Linux scheduling 

•  Windows scheduling 
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Linux Scheduling in Version 2.6.23 + 

•  Scheduling classes 
•  default: Completely Fair Scheduler (CFS) 
•  real-time scheduling class (highest priority tasks) 

•  CFS 
•  Quantum based on proportion of CPU time 
•  per-task virtual run time in variable vruntime 

•  vruntime += t, t is the amount of time it ran 
•  Choose the task with the lowest vruntime 
•  Normal default priority è virtual run time = actual run time 
•  decay factor based on priority of task – lower priority is 

higher decay rate (“bonus”) 
•  To decide next task to run, scheduler picks task with lowest 

virtual run time 
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CFS Performance 
•  (Red-Black) Binary  

Search Tree, not queue 
•  Insert finishing process into  

queue (n log n) 
•  Pointer the lowest: faster… 
•  RB tree is self-balancing 
•  Vruntime calculated based on nice value from -20 to +19 

•  Lower value is higher priority; nice is static value 
•  What happens to I/O bound processes? 
•  Initialization value? vruntime = min_vruntime 
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User Mode Scheduling 
 

•  Windows 7 added user-mode scheduling (UMS)  
•  Applications create and manage threads independent of 

kernel 
•  For large number of threads, much more efficient 
•  UMS schedulers come from programming language 

libraries like                                          
•  C++ Concurrent Runtime (ConcRT) framework 

•  Linux has P-threads (and other thread packages) 
•  What happens when one thread blocks? 
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Algorithm Evaluation 
•  How to select CPU-scheduling algorithm for an OS? 

•  Deterministic 
•  Proofs 
•  queuing models 
•  simulation 
•  implementation 
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Deterministic Evaluation 
•  Group activity: calculate minimum average waiting 

time 
•  FCFS 
•  non-preemptive SJF 
•  RR with quantum=10 
•  Multilevel Feedback Queue 

 (q0: 8; q1: 16; q2: FCFS) 
 
 
Simple and fast, but requires exact numbers for input, 
applies only to those inputs 
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•  FCFS is 28ms: 

•  Non-preemptive SJF is 13ms: 

•  RR is 23ms: 
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FCFS is 28ms: 
 

Non-preemptive SJF is 13ms: 
 

RR is 23ms: 
 



Proofs 
•  Mathematical functions that you want to optimize 

•  Metrics: response time, average response time, maximum 
response time, throughput, … 

•  Optimize: minimize, maximize, 
•  Assumptions: very important; realistic? Eg, all jobs 

available at time t=0 

•  Example: prove that SJF is optimal with respect to 
minimizing average response time 
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Queueing Models 
•  Describes the arrival of processes, and CPU and I/O 

bursts probabilistically 
•  Commonly exponential, and described by mean 
•  Computes average throughput, utilization, waiting time, 

etc 

•  Computer system described as network of servers, 
each with queue of waiting processes 
•  Knowing arrival rates and service rates 
•  Computes utilization, average queue length, average wait 

time, etc 
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Little’s Formula 
•  n = average queue length 
•  W = average waiting time in queue 
•  λ = average arrival rate into queue 
•  Little’s law – in steady state, processes leaving 

queue must equal processes arriving, thus: 
      n = λ x W 
•  Valid for any scheduling algorithm and arrival distribution 

•  For example, if on average 7 processes arrive per 
second, and normally 14 processes in queue, then 
average wait time per process = 2 seconds 
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Simulations 
•  Queueing models limited 
•  Simulations more accurate 

•  Programmed model of computer system 
•  Clock is a variable 
•  Gather statistics indicating algorithm performance 
•  Data to drive simulation gathered via 

•  Random number generator according to probabilities 
•  Distributions defined mathematically or empirically 
•  Trace tapes record sequences of real events in real systems 

•  Event-driven or Time-Driven simulations 
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Implementation 
•  Even simulations have limited accuracy

•  “Just” implement new scheduler and test in real 
systems
•  High cost, high risk

•  Environments vary

•  Most flexible schedulers can be modified per-site or 
per-system
•  Or APIs to modify priorities

•  But (again) environments vary and “can be modified” 
does not mean it’s easy J
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