CPU Scheduling

Daniel Mosse

(Most slides are from Sherif Khattab and Silberschatz, Galvin and Gagne ©2013)

Basic Concepts

 Maximum CPU utilization
obtained with multiprogramming

 CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and /O wait

 CPU burst followed by I/O burst

« CPU burst distribution is of main
concern

load store
add store
read from file

wait for I/0O

store increment
index
write to file

wait for I/0

load store
add store
read from file

wait for I/0

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

N

)\

<

> CPU burst

> 1/0 burst

j CPU burst

<

)\

)\

~ 1/0 burst

> CPU burst

> 1/0 burst

Histogram of CPU-burst Times

160 |-

140 |-

— —
o N
o o
1 1

(0¢]
(@]

frequency

40 |

20 |

| | | | | >

0 8 16 24 32 40
burst duration (milliseconds)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 3

Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

Throughput — # of processes that complete their
execution per time unit

Turnaround time — amount of time to execute a
particular process

Waiting time — amount of time a process has been
waiting in the ready queue

Response time — amount of time it takes from when
a request was submitted until the first response is
produced, not output (for time-sharing environment)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 4

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

» Suppose that the processes arrive in the order: P, ,

P, 24

P, , P,
Tﬁe Gantt Chart for the schedule is:

Pl P2

« Waiting time for P, =0; P, =24; P;=27
* Average waiting time: (0 + 24 + 27)/3 =17

Spring 2018

CS/COE 1550 — Operating Systems — Sherif Khattab

Determining Length of Next CPU Burst

« Can only estimate the length — should be similar to the
previous one

* Then pick process with shortest predicted next CPU burst

* (Can be done by using the length of previous CPU bursts,

using exponential averaging
1. t, = actual length of n CPU burst

2. 7,1 =predicted value for the next CPU burst

3. a,0<=a =<1
4. Define: 7., =at, +(1—05)Tn-

« Commonly, « setto %

* Preemptive version called shortest-remaining-time-
first

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 6

Prediction of the Length of the Next CPU Burst

12 |

T, 10

CPU burst (1) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 7

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

 Preemptive
 Nonpreemptive

SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

Problem = Starvation — low priority processes may never
execute

Solution = Aging — as time progresses increase the priority of
the process

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

Round Robin (RR)

» Each process gets a small unit of CPU time (time
quantum q), usually 4-10 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

* |f there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most g time units at once.
No process waits more than (n-1)g time units.

e Performance

 qglarge = FIFO

g small = g must be large with respect to context switch,
otherwise overhead is too high

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 9

Multilevel Queue

Ready queue is partitioned into separate queues, eqg:

« foreground (interactive)
 background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

« foreground — RR
* background — FCFS

Scheduling must be done between the queues:

* Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

« Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes;

« 80% to foreground in RR
« 20% to background in FCFS

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 10

Multilevel Feedback Queue (by example)

 Three queues:

« Q, - RR; quantum 8 milliseconds
* Q,—-RR; quantum 16 milliseconds

« Q,—FCFS
* Scheduling

il

gquantum = 8

il

quantum = 16

e

FCFS

« A new job enters queue Q,

 When it gains CPU, job receives 8 milliseconds

 If it does not finish in 8 milliseconds, job is moved to queue

* At Q, job receives 16 additional milliseconds

 |f it still does not complete, it is preempted and moved to

Spring 2018

Q;

queue Q,

CS/COE 1550 — Operating Systems — Sherif Khattab

11

Multiple-Processor Scheduling

« NUMA

CPU CPU

S/

\ '
Ifast access % Ifast access
Ss

memory memory

computer

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 12

Multiple-Processor Scheduling

 Symmetric multiprocessing (SMP) — each
processor is self-scheduling, all processes in
common ready queue, or each has its own private
gueue of ready processes

« Currently, most common

* Processor affinity — process has affinity for
processor on which it is currently running

« soft affinity
* hard affinity

 Load balancing

« Contradicts affinity?

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 13

Multithreaded Multicore System

C |compute cycle M |memory stall cycle
threae C M c M c M c M
P
time
freach el mMm|lc | m|lc | m]| c
thread,
> C M C M C M C

time

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 14

Real-Time CPU Scheduling

. Confh@t"phase of dispatch latency:

1. Pree

response to event

eSOy naming-+H-kerrelHmede

. r
2. Releasy ¥ |oREIEIGNLY process of resources negded by
high-ppi processes
< dispatch latency ——»
real-time
process
execution
< >

<«— conflicts

>l dispatch —»

—
time

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

15

Deadlines

P

\{

Rate Montonic Scheduling

Shorter periods = higher priority;
Longer periods = lower priority

P, is assigned a higher priority than P.,.

P1,P,

Y

A priority is assigned based on the inverse of its
period

P1, P

l

Spring 2018

CS/COE 1550 — Operating Systems — Sherif Khattab

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:
* the earlier the deadline, the higher the priority

Deadlines = P P, P, P,

l } } Vo

|P1 | | |P2 | |F>1 | |P2 |P1 | |P2| | |
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 17

Operating System Examples

* Linux scheduling

* Windows scheduling

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 18

Linux Scheduling in Version 2.6.23 +

 Scheduling classes

« default: Completely Fair Scheduler (CFS)
 real-time scheduling class (highest priority tasks)
« CFS

* Quantum based on proportion of CPU time
« per-task virtual run time in variable vruntime
e vruntime +=1t, t is the amount of time it ran
* Choose the task with the lowest vruntime
* Normal default priority =» virtual run time = actual run time

« decay factor based on priority of task — lower priority is
higher decay rate (“bonus”)

* To decide next task to run, scheduler picks task with lowest
virtual run time

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 19

CFS Performance

* (Red-Black) Binary
Search Tree, not qUeUE aie of vrantime

Task with the smallest

Insert finishing process into \ Ty (19 T (o
queue (n log n) (T) (T (7o)

Pointer the lowest: faster... - R

smaller , larger
Value of vruntime g

RB tree is self-balancing
Vruntime calculated based on nice value from -20 to +19

« Lower value is higher priority; nice is static value
What happens to |/O bound processes?

Initialization value? vruntime = min_vruntime

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 20

User Mode Scheduling

 Windows 7 added user-mode scheduling (UMS)

* Applications create and manage threads independent of
kernel

* For large number of threads, much more efficient

 UMS schedulers come from programming language
libraries like

« C++ Concurrent Runtime (ConcRT) framework

* Linux has P-threads (and other thread packages)

 What happens when one thread blocks?

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 21

Algorithm Evaluation

* How to select CPU-scheduling algorithm for an OS?

Deterministic
Proofs

gueuing models
simulation
Implementation

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

22

Deterministic Evaluation

« Group activity: calculate minimum average waiting
time

« FCFS
* non-preemptive SJF

Process Burst Time

| P 10

- RR with quantum=10 P 29
2

* Multilevel Feedback Queue P; 3

(qO: 8; q1: 16; g2: FCFS) Py /

Ps 12

Simple and fast, but requires exact numbers for input,
applies only to those inputs

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 23

e FCFSis 28ms:

P1 P2 P3 P4 P5
0 10 39 42 49 61
* Non-preemptive SJF is 13ms:
P;| P, P, P, P,
] 0 3 10 20 32 61
« RRis 23ms:
P, R S P, P, [P P,
0 10 20 23 30 40 50 52 61

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 24

« Mathematical functions that you want to optimize

* Metrics: response time, average response time, maximum
response time, throughput, ---

* Optimize: minimize, maximize,

« Assumptions: very important; realistic? Eg, all jobs
available at time t=0

« Example: prove that SJF is optimal with respect to
minimizing average response time

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 25

Queueing Models

» Describes the arrival of processes, and CPU and I/O
bursts probabilistically

« Commonly exponential, and described by mean

« Computes average throughput, utilization, waiting time,
etc

« Computer system described as network of servers,
each with queue of waiting processes

* Knowing arrival rates and service rates

« Computes utilization, average queue length, average wait
time, etc

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 26

Little” s Formula

n = average queue length
W = average waiting time in queue
A = average arrival rate into queue

Little” s law — in steady state, processes leaving

gueue must equal processes arriving, thus:
n=AxW

« Valid for any scheduling algorithm and arrival distribution

For example, if on average 7 processes arrive per
second, and normally 14 processes in queue, then
average wait time per process = 2 seconds

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 27

Simulations

« Queueing models limited

« Simulations more accurate

Programmed model of computer system

Clock is a variable

Gather statistics indicating algorithm performance
Data to drive simulation gathered via

 Random number generator according to probabilities
 Distributions defined mathematically or empirically
« Trace tapes record sequences of real events in real systems

Event-driven or Time-Driven simulations

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

28

Implementation

Even simulations have limited accuracy

“Just” implement new scheduler and test in real
systems

- High cost, high risk
Environments vary

Most flexible schedulers can be modified per-site or
per-system

- Or APls to modify priorities

But (again) environments vary and “can be modified”
does not mean it's easy ©

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 29

