
CPU Scheduling

Daniel Mosse

(Most slides are from Sherif Khattab and Silberschatz, Galvin and Gagne ©2013)

Basic Concepts
•  Maximum CPU utilization

obtained with multiprogramming
•  CPU–I/O Burst Cycle – Process

execution consists of a cycle of
CPU execution and I/O wait

•  CPU burst followed by I/O burst
•  CPU burst distribution is of main

concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 2

Histogram of CPU-burst Times

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 3

Scheduling Criteria
•  CPU utilization – keep the CPU as busy as possible
•  Throughput – # of processes that complete their

execution per time unit
•  Turnaround time – amount of time to execute a

particular process
•  Waiting time – amount of time a process has been

waiting in the ready queue
•  Response time – amount of time it takes from when

a request was submitted until the first response is
produced, not output (for time-sharing environment)

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 4

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

•  Suppose that the processes arrive in the order: P1 ,
P2 , P3
The Gantt Chart for the schedule is:

•  Waiting time for P1 = 0; P2 = 24; P3 = 27
•  Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 5

Determining Length of Next CPU Burst
•  Can only estimate the length – should be similar to the

previous one
•  Then pick process with shortest predicted next CPU burst

•  Can be done by using the length of previous CPU bursts,
using exponential averaging

•  Commonly, α set to ½
•  Preemptive version called shortest-remaining-time-

first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

() .1 1 nnn t ταατ −+==

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 6

Prediction of the Length of the Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 7

Priority Scheduling
•  A priority number (integer) is associated with each process

•  The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
•  Preemptive
•  Nonpreemptive

•  SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

•  Problem ≡ Starvation – low priority processes may never
execute

•  Solution ≡ Aging – as time progresses increase the priority of
the process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 8

Round Robin (RR)
•  Each process gets a small unit of CPU time (time

quantum q), usually 4-10 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

•  If there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once.
No process waits more than (n-1)q time units.

•  Performance
•  q large ⇒ FIFO
•  q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 9

Multilevel Queue
•  Ready queue is partitioned into separate queues, eg:

•  foreground (interactive)
•  background (batch)

•  Process permanently in a given queue

•  Each queue has its own scheduling algorithm:
•  foreground – RR
•  background – FCFS

•  Scheduling must be done between the queues:
•  Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.
•  Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes;
•  80% to foreground in RR
•  20% to background in FCFS

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 10

Multilevel Feedback Queue (by example)
•  Three queues:

•  Q0 – RR; quantum 8 milliseconds
•  Q1 – RR; quantum 16 milliseconds
•  Q2 – FCFS

•  Scheduling
•  A new job enters queue Q0

•  When it gains CPU, job receives 8 milliseconds
•  If it does not finish in 8 milliseconds, job is moved to queue

Q1
•  At Q1 job receives 16 additional milliseconds

•  If it still does not complete, it is preempted and moved to
queue Q2

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 11

Multiple-Processor Scheduling
•  NUMA

CPU

fast access

memory

CPU

fast access
slow access

memory

computer

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 12

Multiple-Processor Scheduling
•  Symmetric multiprocessing (SMP) – each

processor is self-scheduling, all processes in
common ready queue, or each has its own private
queue of ready processes
•  Currently, most common

•  Processor affinity – process has affinity for
processor on which it is currently running
•  soft affinity
•  hard affinity

•  Load balancing
•  Contradicts affinity?

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 13

Multithreaded Multicore System

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 14

Real-Time CPU Scheduling
•  Conflict phase of dispatch latency:

1.  Preemption of any process running in kernel mode
2.  Release by low-priority process of resources needed by

high-priority processes

response to event

real-time
process

execution

event

conflicts

time

dispatch

response interval

dispatch latency

process made
availableinterrupt

processing

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 15

Rate Montonic Scheduling
•  A priority is assigned based on the inverse of its

period

•  Shorter periods = higher priority;

•  Longer periods = lower priority

•  P1 is assigned a higher priority than P2.

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 16

Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:
•  the earlier the deadline, the higher the priority

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 17

Operating System Examples

•  Linux scheduling

•  Windows scheduling

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 18

Linux Scheduling in Version 2.6.23 +

•  Scheduling classes
•  default: Completely Fair Scheduler (CFS)
•  real-time scheduling class (highest priority tasks)

•  CFS
•  Quantum based on proportion of CPU time
•  per-task virtual run time in variable vruntime

•  vruntime += t, t is the amount of time it ran
•  Choose the task with the lowest vruntime
•  Normal default priority è virtual run time = actual run time
•  decay factor based on priority of task – lower priority is

higher decay rate (“bonus”)
•  To decide next task to run, scheduler picks task with lowest

virtual run time

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 19

CFS Performance
•  (Red-Black) Binary

Search Tree, not queue
•  Insert finishing process into

queue (n log n)
•  Pointer the lowest: faster…
•  RB tree is self-balancing
•  Vruntime calculated based on nice value from -20 to +19

•  Lower value is higher priority; nice is static value
•  What happens to I/O bound processes?
•  Initialization value? vruntime = min_vruntime

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 20

User Mode Scheduling

•  Windows 7 added user-mode scheduling (UMS)
•  Applications create and manage threads independent of

kernel
•  For large number of threads, much more efficient
•  UMS schedulers come from programming language

libraries like
•  C++ Concurrent Runtime (ConcRT) framework

•  Linux has P-threads (and other thread packages)
•  What happens when one thread blocks?

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 21

Algorithm Evaluation
•  How to select CPU-scheduling algorithm for an OS?

•  Deterministic
•  Proofs
•  queuing models
•  simulation
•  implementation

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 22

Deterministic Evaluation
•  Group activity: calculate minimum average waiting

time
•  FCFS
•  non-preemptive SJF
•  RR with quantum=10
•  Multilevel Feedback Queue

 (q0: 8; q1: 16; q2: FCFS)

Simple and fast, but requires exact numbers for input,
applies only to those inputs

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 23

•  FCFS is 28ms:

•  Non-preemptive SJF is 13ms:

•  RR is 23ms:

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 24

FCFS is 28ms:

Non-preemptive SJF is 13ms:

RR is 23ms:

Proofs
•  Mathematical functions that you want to optimize

•  Metrics: response time, average response time, maximum
response time, throughput, …

•  Optimize: minimize, maximize,
•  Assumptions: very important; realistic? Eg, all jobs

available at time t=0

•  Example: prove that SJF is optimal with respect to
minimizing average response time

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 25

Queueing Models
•  Describes the arrival of processes, and CPU and I/O

bursts probabilistically
•  Commonly exponential, and described by mean
•  Computes average throughput, utilization, waiting time,

etc

•  Computer system described as network of servers,
each with queue of waiting processes
•  Knowing arrival rates and service rates
•  Computes utilization, average queue length, average wait

time, etc

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 26

Little’s Formula
•  n = average queue length
•  W = average waiting time in queue
•  λ = average arrival rate into queue
•  Little’s law – in steady state, processes leaving

queue must equal processes arriving, thus:
 n = λ x W
•  Valid for any scheduling algorithm and arrival distribution

•  For example, if on average 7 processes arrive per
second, and normally 14 processes in queue, then
average wait time per process = 2 seconds

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 27

Simulations
•  Queueing models limited
•  Simulations more accurate

•  Programmed model of computer system
•  Clock is a variable
•  Gather statistics indicating algorithm performance
•  Data to drive simulation gathered via

•  Random number generator according to probabilities
•  Distributions defined mathematically or empirically
•  Trace tapes record sequences of real events in real systems

•  Event-driven or Time-Driven simulations

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 28

Implementation
•  Even simulations have limited accuracy

•  “Just” implement new scheduler and test in real
systems
•  High cost, high risk

•  Environments vary

•  Most flexible schedulers can be modified per-site or
per-system
•  Or APIs to modify priorities

•  But (again) environments vary and “can be modified”
does not mean it’s easy J

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 29

