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Processes and Threads 

•  What is a process? What is a thread?  What types? 
•  A program has one or more locus of execution.  Each 

execution is called a thread of execution.  The set of 
threads comprise a process. 

•  Not an object or executable files: must be executing 
•  Each thread contains: 

–  an instruction pointer (IP), a register with next instruction. 
–  a stack for temporary data (eg, return addresses, parameters) 
–  a data area for data declared globally and statically 

•  A process/thread is active, while a program is not. 
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How to run a program 

•  The executable code is loaded onto memory (where?) 
•  Space is allocated to variables (what types of vars?) 
•  A stack is allocated to the process (for what?) 
•  Registers are updated (which registers?) 
•  Control (of execution) goes to the process (how?) 
•  Process runs one instruction at a time, in a cycle: 

–  fetch the instruction from memory 
–  decode the instruction 
–  update the IP 
–  execute the instruction 
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Processes and Threads (revisited) 

•  Address space: memory reserved for a process 
•  A heavyweight process has a single locus of execution 

per address space, a single IP, a single PCB 
•  A Process Control Block (PCB) contains information 

pertaining to the process itself 
–  state (running, ready, etc) 
–  registers and flags (stack pointer, IP, etc) 
–  resource information (memory/CPU usage, open files, etc) 
–  process ID 
–  security and protection information 
–  accounting info (who to bill, limits, similar to resource info) 
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Processes and Threads (cont) 

•  Thread (lightweight process) of a process share some 
resources (e.g., memory, open files, etc) 

•  Threads have their own stack, IP, local address space 
•  With only a single process in memory, easy to manage 
•  For example, if a process requests IO (eg, read from 

keyboard), it just stays in the memory waiting 
•  Several threads or processes complicate things; when 

IO is requested, why make other processes wait? 
•  Context switching takes place…  take a waiting thread 
“out of the CPU” and put a thread that is ready in CPU 
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State Diagram 

•  Create: PCB and other resources are setup 
•  End: resources held are returned to the OS (freed) 
•  Context switching: saves  HW context; updates PCB 
•  States are typically implemented as queues, lists, sets 
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These two states check for sufficient 
resources in the system 

Complete State Diagram 
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Multiple Threads and Processes 

•  Several problems with multitasking: 
–  fairness in usage of CPU 
–  fairness in usage of other resources 
–  coordinated input and output 
–  lack of progress (deadlocks and livelocks) 
–  synchronization: access to the same data item by several 

processes/threads (typical example, deposits into account) 
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Synchronization Example 
•  At time t=6 T2 requests the withdrawal of $200 (and 

gets preempted); at t=8 T1 requests the deposit of 
$200; t=9, T1 reads balance ($300); at t=10, T2 adds 
$200, at t=11, T1 writes new balance; at t=12, T2 
resumes and reads balance; at t=13, T2 subtracts $200; 
at t=14, T2 writes new balance 
 
 
 

•  What if order was changed: 6, 8, 9, 12, 13, 14, 10, 11? 
•  Other combinations? 

6       7       8       9      10      11     12     13     14     15 ... 

T2req     T1req  T1r   T1c   T1w   T2r  T2c   T2w 
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More on Synchronization 

•  Semaphores and primitives serve to achieve mutual 
exclusion and synchronized access to resources 

•  Clearly, there is more delays associated with attemp-
ting to access a resource protected by semaphores 

•  Non-preemptive scheduling solves that problem 
•  As an aside: 

–  Which scheduling mechanism is more efficient?  Preemptive 
or non-preemptive? 

–  Within each type of scheduling (pr or non-pr), one can 
choose which policy he/she wants to use 
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Using Semaphores 

•  When threads use semaphores, they are attempting to 
reserve a resource for usage.  Only the threads that 
succeed are allowed in the CS. 

•  If there is a thread in the CS already, other requesting 
threads are blocked, waiting on an event 

•  When the thread exits the CS, the OS unblocks the 
waiting thread, typically during the V(s) sys_call 

•  The now unblocked thread becomes ready 
•  The OS may decide to invoke the scheduler…  or not 
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Types of Synchronization 

•  There are 2 basic types of sync: 
     

P1:: 
P(s1) 
… 
V(s1) 

P2:: 
P(s1) 
… 
V(s1) 

P2:: 
P(s2) 
… 
V(s1) 

P1:: 
P(s1) 
… 
V(s2) 

MUTEX BARRIER SYNC 
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Deadlocks 

•  When a program is written carelessly, it may cause a… 
•  DEADLOCK!!! 
•  Each process will wait 

for the other process 
indefinitely 

•  How can we deal with 
these abnormalities? 

•  Avoidance, prevention, or detection and resolution 
•  Which one is more efficient? 

P1:: 
P(s1) 
P(s2) 
… 
V(s2) 
V(s1) 

P2:: 
P(s2) 
P(s1) 
… 
V(s1) 
V(s2) 
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Dining Philosophers 

•  There were some hungry philosophers, and some angry 
philosophers (not the same, not Rastas) 

•  Each needed two forks, each shared both his/her forks 
•  Possible deadlock situation!  HOW? 
•  Is it possible to have a (literally) starvation situation? 
•  What is the best solution? 

–  Round-robin? FIFO? How good are FIFO and RR? 
•   Important: what is the metric to judge a solution by? 

–  Least overhead?  Minimum starvation? 
–  How to evaluate fairness? 


