Week 2: Processes and Threads

(Some slides are from Silberschatz, Galvin and Gagne ©2013, and Khattab)

Processes

* Process Concept

* Process Scheduling

* QOperations on Processes

* Interprocess Communication

 Examples of IPC Systems

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 2

Process Concept

* An operating system executes a variety of programs:
« Batch system — jobs
* Time-shared systems — user programs or tasks

* Process —a program in execution; process execution
must progress in sequential fashion

* Multiple parts

 The program code, also called text section

« Current activity including program counter, processor
registers

« Stack containing temporary data
* Function parameters, return addresses, local variables

« Data section containing global variables

« Heap containing memory dynamically allocated during run
time

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 3

Process in Memory

* A process is created by allocating
memory and reading certain items
from permanent storage

max
« Each process has an address

stack
space
« The memory is freed (OS can re- l
use it) when process is
terminated... :
* S0, processes are created, run, heap

and terminate. Is there more?

data

text

0

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 4

Process State

* As a process executes, it changes state

* new: The process is being created
* running: Instructions are being executed
« waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a
processor

 terminated: The process has finished execution

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 5

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 6

Process Control Block (PCB)

Information associated with each process
(also called task control block)

Process state — running, waiting, etc
Program counter — location of instruction to execute next
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers

Memory-management information — memory allocated to
the process

Accounting information — CPU used, clock time elapsed
since start, time limits

/O status information — |/O devices allocated to process,
list of open files

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 7

CPU Switch From Process to Process

Similar process to

process P, operating system process P, switch from Process
interrupt or system call to Interrup Service
executing ‘l/ l . Routing (ISR), but
1 save state into PCB, usually the same

Lige Stack is used.

L]
®

reload state from PCB,) ISR does minimal

/“ work and set up the
rest as a regular

process for later.

>idle interrupt or system call executing

} T~V

save state into PCB,

~

> idle

reload state from PCB,

executing | _\
Y

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 8

Process Representation in Linux

Represented by the C structure task struct

Example fields:

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

Vi VW'
struct task_struct struct task_struct struct task_struct
process information process information oo o process information
w_“ T x_J kR _“/
current

(currently executing proccess)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 9

» So far, process has a single thread of execution

« Consider having multiple program counters per
process

« Multiple locations of execution at once
« Multiple locations of control -> threads

« Must then have storage for thread details, multiple
program counters in PCB Process

* More on threads later

Threads

Kernel

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 10

Process Scheduling and Implementation

« Maximize CPU use, quickly switch processes onto
CPU for time sharing

 Process scheduler selects among available
processes for next execution on CPU

* Maintains scheduling queues of processes

 Job queue — set of all processes in the system

« Ready queue — set of all processes residing in main
memory, ready and waiting to execute

 Device queues — set of processes waiting for an |/O
device

* Processes migrate among the various queues

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 11

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 12

Ready Queue And Various I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

Spring 2018

queue header PCB, PCB,
head > > —
el registers registers
head +——=
Elll
head —T—=
i PCB;, PCB,,4 PCBg
/_4 —_— e —
head 1
PCBs
head T—> - ——
vl g

CS/COE 1550 — Operating Systems — Sherif Khattab

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

»| ready queue -@) g

/O /O queue *=—— |/O request =
time slice &
expired
child fork a ‘
executes child
interrupt wait foran |
OCCUrs interrupt

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 14

Schedulers

« Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU

« invoked frequently (milliseconds) = must be fast

 Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue

« invoked infrequently (seconds, minutes) = may be slow
« controls the degree of multiprogramming

* Processes can be described as either:

* |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

« CPU-bound process — spends more time doing computations; few
very long CPU bursts

« Long-term scheduler strives for good process mix. WHY!?!1?

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 15

Addition of Medium Term Scheduling

B Medium-term scheduler can be added if degree of
multiple programming needs to decrease

® Remove process from memory, store on disk, bring back
iIn from disk to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue @ » end
I/0O waiting
queues

Yy

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 16

Context Switch

 When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context
switch

» Context of a process represented in the PCB

» Context-switch time is overhead; the system does no
useful work while switching

 The more complex the OS and the PCB =» the longer the
context switch

* Time dependent on hardware support

 Some hardware provides multiple sets of registers per
CPU = multiple contexts loaded at once

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 17

Operations on Processes

« System must provide mechanisms for:

e process creation,
e process termination,
e and so on as detailed next

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 18

Process Creation

 Parent process creates children processes, which,
in turn create other processes, forming a tree of
processes

* Generally, process identified and managed via a
process identifier (pid)

* Resource sharing options
« Parent and children share all resources
« Children share subset of parent’ s resources
« Parent and child share no resources

» EXxecution options

* Parent and children execute concurrently
* Parent waits until children terminate

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 19

Process Creation (Cont.)

 Address space

« Child duplicate of parent
« Child has a program loaded into it

 UNIX examples

« fork () system call creates new process

 exec () system call used after a fork () to replace the
process’ memory space with a new program

chid—{(exec(»

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 20

parent resumes

walt

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid. t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

Spring 2018 } CS/COE 1550 — Operating Systems — Sherif Khattab 21

Process Termination

 Process executes last statement and then asks the
operating system to delete it using the exit ()

system call.
« Returns status data from child to parent (via wait ())

* Process’ resources are deallocated by operating system

« Parent may terminate the execution of children
processes using the abort () system call. Some

reasons for doing so:
« Child has exceeded allocated resources
« Task assigned to child is no longer required

 The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 22

Process Termination

e Some operating systems do not allow a child to exist if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

« cascading termination. All children, grandchildren, etc. are
terminated.

 The termination is initiated by the operating system.

* The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
iInformation and the pid of the terminated process

pid = wait(&status);

* |If no parent waiting (did not invoke wait ()) process is a
zombie

« |f parent terminated without invoking wait , process is an
orphan

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 23

Multiprocess Architecture — \Web Browser

* |f web browsers ran as single process

 If one site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

 Browser process manages user interface, disk and
network |/O

 Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website

opened

* Runs in sandbox restricting disk and network 1/O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 24

Interprocess Communication

* Processes within a system may be independent or
cooperating

« Cooperating process can affect or be affected by other
processes, including sharing data

« Reasons for cooperating processes:

« Information sharing

« Computation speedup
* Modularity

« Convenience

. Ellgcc)geratmg processes need interprocess communication

« Two models of IPC

 Shared memory
« Message passing

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 25

Communications Models

(2) Message passing. (b) shared memory.

process A process A
orocess B — shared memory |«
process B
message queue
> Mo M4 Mo Mg ... M|
kernel
kernel

(@) (b)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 26

Producer-Consumer Problem

« Paradigm for cooperating processes, producer
process produces information that is consumed by a
consumer process

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 27

Bounded-Buffer — Shared-Memory Solution

« Shared data

* #define BUFFER SIZE 10
* typedef struct {

e } i1tem;

* item buffer[BUFFER_SIZE];
e i1nt 1n = 0;
e int out = 0;

» Solution is correct, but can only use BUFFER _SIZE-1
elements

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 28

Bounded-Buffer — Producer

item next produced;
while (true) {
/[* produce an item in next produced */
while (((in + 1) % BUFFER _SIZE) == out)
, [do nothing */
buffer[in] = next produced,;
in=(in+ 1) % BUFFER_SIZE;
}

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 29

Bounded Buffer — Consumer

1tem next consumed;

while (true) {
while (1n == out)

; /* do nothing */

next consumed = buffer|out];
out = (out + 1) % BUFFER SIZE;

/* consume the item 1n next
consumed */

J

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

30

Interprocess Communication — Shared Memory

* Major issue is to provide a mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

* Synchronization is discussed in great details next
week.

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 31

Interprocess Communication — Message Passing

» |PC facility provides two operations:

 send(message)
 receive(message)

 The message size is either fixed or variable

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 32

Direct Communication

* Processes must name each other explicitly:

 send (P, message) — send a message to process P

 receive(Q, message) — receive a message from
process Q

* Properties of direct links

* Links are established automatically (with send/recv)

* Alink is associated with exactly one pair of
communicating processes

* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 33

Indirect Communication

 Messages are directed and received from mailboxes
(also referred to as ports)

 Each mailbox has a unique id
* Processes can communicate only if they share a mailbox

* Properties of indirect link

« Link established only if processes share a common
mailbox

* Alink may be associated with many processes

« Each pair of processes may share several communication
links

* Link may be unidirectional or bi-directional

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 34

Indirect Communication

* QOperations

* create a new mailbox (port)
* send and receive messages through mailbox
« destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 35

Indirect Communication

* Mailbox sharing

 P,, P, and P; share mailbox A
P, sends; P, and P;receive
 Who gets the message”?

« Solutions

1. Allow a link to be associated with at most two processes

2. Allow only one process at a time to execute a receive
operation

3. Allow the system to select arbitrarily the receiver. Sender
IS notified who the receiver was

4. Other solutions?

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 36

Synchronization

 Message passing may be either blocking or non-blocking
* Blocking is considered synchronous

* Blocking send -- the sender is blocked until the message is
received

* Blocking receive -- the receiver is blocked until a message
Is available

 Non-blocking is considered asynchronous

* Non-blocking send -- the sender sends the message and
continue

* Non-blocking receive -- the receiver receives:
A valid message, or
Null message

» Different combinations possible

« If both send and receive are blocking, we have a rendezvous

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 37

Synchronization (Cont.)

Producer-consumer becomes trivial

Spring 2018

message next produced;

while (true) {

/* produce an item in next produced */

send (next produced) ;

J

message next consumed;
while (true) {

recelve (next consumed) ;

/* consume the item in next consumed */

CS/COE 1550 — Operating Systems — Sherif Khattab

38

Buffering

* Queue of messages attached to the link.

* implemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 39

Examples of IPC Systems - POSIX

Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR,
0666) ;

Also used to open an existing segment to share it

Set the size of the object
ftruncate (shm fd, 4096);

Map the shared memory object
ptr = mmap (0, 4096, PROT WRITE,
MAP SHARED, shm fd, 0);
Now the process could write to the shared memory

sprintf (ptr, "Writing to shared memory") ;

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 40

Communications in Client-Server Systems

 Sockets

« Remote Procedure Calls

* Pipes

Spring 2018

CS/COE 1550 — Operating Systems — Sherif Khattab

41

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
{liGiFZESRICE8:8)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 42

* Acts as a conduit allowing two processes to
communicate

* Ordinary pipes — cannot be accessed from outside
the process that created it. Typically, a parent

process creates a pipe and uses it to communicate
with a child process that it created.

 Named pipes — can be accessed without a parent-
child relationship.

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 43

Ordinary Pipes

* Ordinary Pipes allow communication in standard producer-consumer
style

* Producer writes to one end (the write-end of the pipe)

« Consumer reads from the other end (the read-end of the pipe)

* Ordinary pipes are therefore unidirectional

* Require parent-child relationship between communicating processes

parent child
fd[O] fd[1] fd[O] fd[1]

|
L)

Windows calls these anonymous pipes

« See Unix and Windows code samples in textbook

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 44

Named Pipes

 Named Pipes are more powerful than ordinary pipes
« Communication is bidirectional

* No parent-child relationship is necessary between the
communicating processes

« Several processes can use the named pipe for
communication

* Provided on both UNIX and Windows systems

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 45

Chapter 4: Threads

* Overview

* Multicore Programming

* Multithreading Models

* Thread Libraries

* Implicit Threading

* Threading Issues

* Operating System Examples

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 46

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client > server > thread

J

(3) resume listening
for additional
client requests

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 47

Concurrency vs. Parallelism

* Parallelism implies a system can perform more than
one task simultaneously

« Concurrency supports more than one task making
progress

« Single processor / core, scheduler providing concurrency

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 48

Concurrency vs. Parallelism

« Concurrent execution on single-core system:

single core T4 To T3 Ty T4 To Ts Ty T4

time

» Parallelism on a multi-core system:

core 1 T4 T3 T4 Ts T4

core 2 To Ty To Ty To

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 49

Single and Multithreaded Processes

Spring 2018

code

data

files

registers

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

;h

— thread

multithreaded process

CS/COE 1550 — Operating Systems — Sherif Khattab

Amdahl’s Law

 |dentifies performance gains from adding additional
cores to an application that has both serial and
parallel components

« Sis serial portion
* N processing cores

1

(1=95)
5+ (=

* Thatis, if application is 75% parallel / 25% serial,
moving from 1 to 2 cores results in speedup of 1.6
times

* As N approaches infinity, speedup approaches 1/ S

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 51

speedup <

User Threads and Kernel Threads

 User threads - management done by user-level
threads library

* Three primary thread libraries:

POSIX Pthreads
Windows threads

Java threads
 Kernel threads - Supported by the Kernel

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 52

Multithreading Models

* Many-to-One
 One-to-One

* Many-to-Many

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 53

Many-to-One

* Many user-level threads mapped to single kernel
thread

* One thread blocking causes all to block

* Multiple threads may not run in parallel on muticore
system because only one may be in kernel at a time

* Few systems currently use this model ; ;
« Examples: 3 g'_

« Solaris Green Threads
* GNU Portable Threads

<«— kernel thread

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 54

« Each user-level thread maps to a kernel thread
» Creating a user-level thread creates a kernel thread
* More concurrency than many-to-one

 Number of threads per process sometimes restricted
due to overhead

<«— user thread

 Examples

 Windows
¢ Linux <«— Kkernel thread

« Solaris 9 and later

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 55

Many-to-Many Model

* Allows many user level threads to be mapped to
many kernel threads

* Allows the operating system to create a sufficient
number of kernel threads ; ;

 Examples: ;

« Solaris prior to version 9
 Windows with the ThreadFiber package

<«— kernel thread

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 56

Two-level Model

« Similar to M:M, except that it allows a user thread to
be bound to kernel thread

 Examples
. IRIX ; o ; —
« HP-UX
« Tru64 UNIX
« Solaris 8 and earlier

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 57

Thread Libraries

Two primary ways of implementing

* Library entirely in user space
« Kernel-level library supported by the OS

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 58

Pthreads

 May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

« Specification, not implementation

 Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 59

Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */

if (arge !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1]) < 0) {

fprintf (stderr,"’%d must be >= 0\n",atoi(argv([1]));
return -1;

}

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 60

Pthreads Example (Cont.)

/* get the default attributes */
pthread attr _init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */

pthread _join(tid,NULL);

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1;

pthread exit (0);
}

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 61

Implicit Threading

* Creation and management of threads done by
compilers and run-time libraries rather than
programmers

* Three methods explored

 Thread Pools
« OpenMP
« Grand Central Dispatch

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 62

Thread Pools

» Create a number of threads in a pool where they
await work

* Advantages:

« Usually slightly faster to service a request with an existing
thread than create a new thread

« Allows the number of threads in the application(s) to be
bound by the size of the pool

« Separating task to be performed from mechanics of
creating task allows different strategies for running task

« Ex:Tasks could be scheduled to run periodically

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 63

OpenMP

« Set of compiler directives and an API for C, C++, FORTRAN

* Provides support for parallel programming in shared-memory
environments

 |dentifies parallel regions — blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are cores

#pragma omp parallel for for (i=0;i<N;i++) {
c[i1] = a[1] + b[1];

}

Run for loop in parallel

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 64

Grand Central Dispatch

* Apple technology for Mac OS X and 10S operating
systems

« Extensions to C, C++ languages, API, and run-time
library

* Allows identification of parallel sections

 Manages most of the details of threading

 Blockisin™}' - “{ printf("I am a
block"); }

* Blocks placed in dispatch queue

* Assigned to available thread in thread pool when removed
from queue

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 65

Grand Central Dispatch

« Two types of dispatch queues:

« serial — blocks removed in FIFO order, queue is per
process, called main queue

 Programmers can create additional serial queues within program

« concurrent — removed in FIFO order but several may be
removed at a time

« Three system wide queues with priorities low, default, high

dispatch_queue.t queue = dispatch get_global _queue
(DISPATCH_ QUEUE_PRIORITY DEFAULT, O0);

dispatch.async (queue, "“{ printf ("I am a block."); });

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 66

Semantics of fork() and exec()

* Does fork () duplicate only the calling thread or all
threads?

Some UNIXes have two versions of fork

 exec () usually works as normal — replace the
running process including all threads

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

67

Signal Handling

« Signals are used in UNIX systems to notify a
process that a particular event has occurred.

* A signal handler is used to process signals

« Signal is generated by a particular event
« Signal is delivered to a process

« Signal is handled by one of two signal handlers:

e default
e user-defined

* Every signal has default handler that the kernel runs
when handling the signal

 User-defined signal handler can override default
* For single-threaded, signal delivered to process

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 68

Signal Handling (Cont.)

Where should a signal be delivered for multi-threaded?

* Deliver the signal to the thread to which the signal applies
* Deliver the signal to every thread in the process
* Deliver the signal to certain threads in the process

« Assign a specific thread to receive all signals for the
process

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 69

Thread Cancellation

* Terminating a thread before it has finished
* Thread to be canceled is target thread
 Two general approaches:

* Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 70

Thread Cancellation (Cont.)

* |nvoking thread cancellation requests cancellation,
but actual cancellation depends on thread state

* |f thread has cancellation disabled, cancellation
remains pending until thread enables it

* Default type is deferred

« Cancellation only occurs when thread reaches
cancellation point

* pthread testcancel(()

 Then cleanup handler is invoked

* On Linux systems, thread cancellation is handled
through signals

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab

71

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to
nave its own copy of data

» Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

 Different from local variables

* Local variables visible only during single function
iInvocation

« TLS visible across function invocations
e Similar to static data

 TLS is unique to each thread

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 72

Scheduler Activations

« Both M:M and Two-level models require communication
to maintain the appropriate number of kernel threads
allocated to the application

* Typically use an intermediate data structure between
user and kernel threads — lightweight process (LWP)

* Appears to be a virtual processor on which process can
schedule user thread to run

« Each LWP attached to kernel thread
« How many LWPs to create?

« Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the

thread library

* This communication allows an application to maintain the
correct number of kernel threads

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 73

Windows Threads Data Structures

Spring 2018

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
kernel
stack

TEB

thread identifier

user
stack

thread-local
storage

kernel space

user space

CS/COE 1550 — Operating Systems — Sherif Khattab

74

Linux Threads

 Linux refers to them as tasks rather than threads

* Thread creation is done through clone () system
call

* clone () allows a child task to share the address
space of the parent task (process)

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 75

