Week 2: Processes and Threads

(Some slides are from Silberschatz, Galvin and Gagne ©2013, and Khattab)



Processes

* Process Concept

* Process Scheduling

* QOperations on Processes

* Interprocess Communication

 Examples of IPC Systems

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 2



Process Concept

* An operating system executes a variety of programs:
« Batch system — jobs
* Time-shared systems — user programs or tasks

* Process —a program in execution; process execution
must progress in sequential fashion

* Multiple parts

 The program code, also called text section

« Current activity including program counter, processor
registers

« Stack containing temporary data
* Function parameters, return addresses, local variables

« Data section containing global variables

« Heap containing memory dynamically allocated during run
time
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Process in Memory

* A process is created by allocating
memory and reading certain items
from permanent storage

max
« Each process has an address

stack
space
« The memory is freed (OS can re- l
use it) when process is
terminated... :
* S0, processes are created, run, heap

and terminate. Is there more?

data

text

0
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Process State

* As a process executes, it changes state

* new: The process is being created
* running: Instructions are being executed
« waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a
processor

 terminated: The process has finished execution
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Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait
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Process Control Block (PCB)

Information associated with each process
(also called task control block)

Process state — running, waiting, etc
Program counter — location of instruction to execute next
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers

Memory-management information — memory allocated to
the process

Accounting information — CPU used, clock time elapsed
since start, time limits

/O status information — |/O devices allocated to process,
list of open files
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CPU Switch From Process to Process

Similar process to

process P, operating system process P, switch from Process
interrupt or system call to Interrup Service
executing ‘l/ l . Routing (ISR), but
1 save state into PCB, usually the same

Lige  Stack is used.

L]
®

reload state from PCB, ) ISR does minimal

/“ work and set up the
rest as a regular

process for later.

>idle interrupt or system call executing

} T~V

save state into PCB,

~

> idle

reload state from PCB,

executing | _\
Y
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Process Representation in Linux

Represented by the C structure task struct

Example fields:

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

Vi VW'
struct task_struct struct task_struct struct task_struct
process information process information oo o process information
w_“ T x_J kR _“/
current

(currently executing proccess)
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» So far, process has a single thread of execution

« Consider having multiple program counters per
process

« Multiple locations of execution at once
« Multiple locations of control -> threads

« Must then have storage for thread details, multiple
program counters in PCB Process

* More on threads later

Threads

Kernel
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Process Scheduling and Implementation

« Maximize CPU use, quickly switch processes onto
CPU for time sharing

 Process scheduler selects among available
processes for next execution on CPU

* Maintains scheduling queues of processes

 Job queue — set of all processes in the system

« Ready queue — set of all processes residing in main
memory, ready and waiting to execute

 Device queues — set of processes waiting for an |/O
device

* Processes migrate among the various queues
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Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait
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Ready Queue And Various I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

Spring 2018

queue header PCB, PCB,
head > > —
el registers registers
head +——=
Elll
head —T—=
i PCB;, PCB,,4 PCBg
/_4 —_— e —
head 1
PCBs
head T—> - ——
vl g
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Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

»| ready queue -@) g

/O /O queue  *=—— |/O request =
time slice &
expired
child fork a ‘
executes child
interrupt wait foran |
OCCUrs interrupt
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Schedulers

« Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU

« invoked frequently (milliseconds) = must be fast

 Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue

« invoked infrequently (seconds, minutes) = may be slow
« controls the degree of multiprogramming

* Processes can be described as either:

* |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

« CPU-bound process — spends more time doing computations; few
very long CPU bursts

« Long-term scheduler strives for good process mix. WHY!?!1?
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Addition of Medium Term Scheduling

B Medium-term scheduler can be added if degree of
multiple programming needs to decrease

® Remove process from memory, store on disk, bring back
iIn from disk to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue @ » end
I/0O waiting
queues

Yy
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Context Switch

 When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context
switch

» Context of a process represented in the PCB

» Context-switch time is overhead; the system does no
useful work while switching

 The more complex the OS and the PCB =» the longer the
context switch

* Time dependent on hardware support

 Some hardware provides multiple sets of registers per
CPU = multiple contexts loaded at once
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Operations on Processes

« System must provide mechanisms for:

e process creation,
e process termination,
e and so on as detailed next
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Process Creation

 Parent process creates children processes, which,
in turn create other processes, forming a tree of
processes

* Generally, process identified and managed via a
process identifier (pid)

* Resource sharing options
« Parent and children share all resources
« Children share subset of parent’ s resources
« Parent and child share no resources

» EXxecution options

* Parent and children execute concurrently
* Parent waits until children terminate

Spring 2018 CS/COE 1550 — Operating Systems — Sherif Khattab 19



Process Creation (Cont.)

 Address space

« Child duplicate of parent
« Child has a program loaded into it

 UNIX examples

« fork () system call creates new process

 exec () system call used after a fork () to replace the
process’ memory space with a new program

chid—{(  exec( »
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C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid. t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;
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Process Termination

 Process executes last statement and then asks the
operating system to delete it using the exit ()

system call.
« Returns status data from child to parent (via wait ())

* Process’ resources are deallocated by operating system

« Parent may terminate the execution of children
processes using the abort () system call. Some

reasons for doing so:
« Child has exceeded allocated resources
« Task assigned to child is no longer required

 The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates
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Process Termination

e Some operating systems do not allow a child to exist if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

« cascading termination. All children, grandchildren, etc. are
terminated.

 The termination is initiated by the operating system.

* The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
iInformation and the pid of the terminated process

pid = wait(&status);

* |If no parent waiting (did not invoke wait () ) process is a
zombie

« |f parent terminated without invoking wait , process is an
orphan
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Multiprocess Architecture — \Web Browser

* |f web browsers ran as single process

 If one site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

 Browser process manages user interface, disk and
network |/O

 Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website

opened

* Runs in sandbox restricting disk and network 1/O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in
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Interprocess Communication

* Processes within a system may be independent or
cooperating

« Cooperating process can affect or be affected by other
processes, including sharing data

« Reasons for cooperating processes:

« Information sharing

« Computation speedup
* Modularity

« Convenience

. Ellgcc)geratmg processes need interprocess communication

« Two models of IPC

 Shared memory
« Message passing
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Communications Models

(2) Message passing. (b) shared memory.

process A process A
orocess B —  shared memory |«
process B
message queue
> Mo M4 Mo Mg ... M|
kernel
kernel

(@) (b)
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Producer-Consumer Problem

« Paradigm for cooperating processes, producer
process produces information that is consumed by a
consumer process
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Bounded-Buffer — Shared-Memory Solution

« Shared data

* #define BUFFER SIZE 10
* typedef struct {

e } i1tem;

* item buffer[BUFFER_SIZE];
e i1nt 1n = 0;
e int out = 0;

» Solution is correct, but can only use BUFFER _SIZE-1
elements
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Bounded-Buffer — Producer

item next produced;
while (true) {
/[* produce an item in next produced */
while (((in + 1) % BUFFER _SIZE) == out)
, [ do nothing */
buffer[in] = next produced,;
in=(in+ 1) % BUFFER_SIZE;
}
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Bounded Buffer — Consumer

1tem next consumed;

while (true) {
while (1n == out)

; /* do nothing */

next consumed = buffer|out];
out = (out + 1) % BUFFER SIZE;

/* consume the item 1n next
consumed */

J
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Interprocess Communication — Shared Memory

* Major issue is to provide a mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

* Synchronization is discussed in great details next
week.
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Interprocess Communication — Message Passing

» |PC facility provides two operations:

 send(message)
 receive(message)

 The message size is either fixed or variable
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Direct Communication

* Processes must name each other explicitly:

 send (P, message) — send a message to process P

 receive(Q, message) — receive a message from
process Q

* Properties of direct links

* Links are established automatically (with send/recv)

* Alink is associated with exactly one pair of
communicating processes

* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional
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Indirect Communication

 Messages are directed and received from mailboxes
(also referred to as ports)

 Each mailbox has a unique id
* Processes can communicate only if they share a mailbox

* Properties of indirect link

« Link established only if processes share a common
mailbox

* Alink may be associated with many processes

« Each pair of processes may share several communication
links

* Link may be unidirectional or bi-directional
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Indirect Communication

* QOperations

* create a new mailbox (port)
* send and receive messages through mailbox
« destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A
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Indirect Communication

* Mailbox sharing

 P,, P, and P; share mailbox A
P, sends; P, and P;receive
 Who gets the message”?

« Solutions

1. Allow a link to be associated with at most two processes

2. Allow only one process at a time to execute a receive
operation

3. Allow the system to select arbitrarily the receiver. Sender
IS notified who the receiver was

4. Other solutions?
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Synchronization

 Message passing may be either blocking or non-blocking
* Blocking is considered synchronous

* Blocking send -- the sender is blocked until the message is
received

* Blocking receive -- the receiver is blocked until a message
Is available

 Non-blocking is considered asynchronous

* Non-blocking send -- the sender sends the message and
continue

* Non-blocking receive -- the receiver receives:
A valid message, or
Null message

» Different combinations possible

« If both send and receive are blocking, we have a rendezvous
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Synchronization (Cont.)

Producer-consumer becomes trivial

Spring 2018

message next produced;

while (true) {

/* produce an item in next produced */

send (next produced) ;

J

message next consumed;
while (true) {

recelve (next consumed) ;

/* consume the item in next consumed */
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Buffering

* Queue of messages attached to the link.

* implemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits
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Examples of IPC Systems - POSIX

Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR,
0666) ;

Also used to open an existing segment to share it

Set the size of the object
ftruncate (shm fd, 4096);

Map the shared memory object
ptr = mmap (0, 4096, PROT WRITE,
MAP SHARED, shm fd, 0);
Now the process could write to the shared memory

sprintf (ptr, "Writing to shared memory") ;
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Communications in Client-Server Systems

 Sockets

« Remote Procedure Calls

* Pipes

Spring 2018
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Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
{liGiFZESRICE8:8)
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* Acts as a conduit allowing two processes to
communicate

* Ordinary pipes — cannot be accessed from outside
the process that created it. Typically, a parent

process creates a pipe and uses it to communicate
with a child process that it created.

 Named pipes — can be accessed without a parent-
child relationship.
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Ordinary Pipes

* Ordinary Pipes allow communication in standard producer-consumer
style

* Producer writes to one end (the write-end of the pipe)

« Consumer reads from the other end (the read-end of the pipe)

* Ordinary pipes are therefore unidirectional

* Require parent-child relationship between communicating processes

parent child
fd[O] fd[1] fd[O] fd[1]

|
L)

Windows calls these anonymous pipes

« See Unix and Windows code samples in textbook
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Named Pipes

 Named Pipes are more powerful than ordinary pipes
« Communication is bidirectional

* No parent-child relationship is necessary between the
communicating processes

« Several processes can use the named pipe for
communication

* Provided on both UNIX and Windows systems
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Chapter 4: Threads

* Overview

* Multicore Programming

* Multithreading Models

* Thread Libraries

* Implicit Threading

* Threading Issues

* Operating System Examples
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Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client >  server > thread

J

(3) resume listening
for additional
client requests
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Concurrency vs. Parallelism

* Parallelism implies a system can perform more than
one task simultaneously

« Concurrency supports more than one task making
progress

« Single processor / core, scheduler providing concurrency
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Concurrency vs. Parallelism

« Concurrent execution on single-core system:

single core T4 To T3 Ty T4 To Ts Ty T4

time

» Parallelism on a multi-core system:

core 1 T4 T3 T4 Ts T4

core 2 To Ty To Ty To
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Single and Multithreaded Processes

Spring 2018

code

data

files

registers

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

;h

— thread

multithreaded process
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Amdahl’s Law

 |dentifies performance gains from adding additional
cores to an application that has both serial and
parallel components

« Sis serial portion
* N processing cores

1

(1=95)
5+ (=

* Thatis, if application is 75% parallel / 25% serial,
moving from 1 to 2 cores results in speedup of 1.6
times

* As N approaches infinity, speedup approaches 1/ S
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User Threads and Kernel Threads

 User threads - management done by user-level
threads library

* Three primary thread libraries:

POSIX Pthreads
Windows threads

Java threads
 Kernel threads - Supported by the Kernel
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Multithreading Models

* Many-to-One
 One-to-One

* Many-to-Many
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Many-to-One

* Many user-level threads mapped to single kernel
thread

* One thread blocking causes all to block

* Multiple threads may not run in parallel on muticore
system because only one may be in kernel at a time

* Few systems currently use this model ; ;
« Examples: 3 g'_

« Solaris Green Threads
* GNU Portable Threads

<«— kernel thread
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« Each user-level thread maps to a kernel thread
» Creating a user-level thread creates a kernel thread
* More concurrency than many-to-one

 Number of threads per process sometimes restricted
due to overhead

<«— user thread

 Examples

 Windows
¢ Linux <«— Kkernel thread

« Solaris 9 and later
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Many-to-Many Model

* Allows many user level threads to be mapped to
many kernel threads

* Allows the operating system to create a sufficient
number of kernel threads ; ;

 Examples: ;

« Solaris prior to version 9
 Windows with the ThreadFiber package

<«— kernel thread
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Two-level Model

« Similar to M:M, except that it allows a user thread to
be bound to kernel thread

 Examples
. IRIX ; o ; —
« HP-UX
« Tru64 UNIX
« Solaris 8 and earlier
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Thread Libraries

Two primary ways of implementing

* Library entirely in user space
« Kernel-level library supported by the OS
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Pthreads

 May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

« Specification, not implementation

 Common in UNIX operating systems (Solaris, Linux,
Mac OS X)
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Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */

if (arge !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1]) < 0) {

fprintf (stderr,"’%d must be >= 0\n",atoi(argv([1]));
return -1;

}
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Pthreads Example (Cont.)

/* get the default attributes */
pthread attr _init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */

pthread _join(tid,NULL);

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1;

pthread exit (0);
}
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Implicit Threading

* Creation and management of threads done by
compilers and run-time libraries rather than
programmers

* Three methods explored

 Thread Pools
« OpenMP
« Grand Central Dispatch
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Thread Pools

» Create a number of threads in a pool where they
await work

* Advantages:

« Usually slightly faster to service a request with an existing
thread than create a new thread

« Allows the number of threads in the application(s) to be
bound by the size of the pool

« Separating task to be performed from mechanics of
creating task allows different strategies for running task

« Ex:Tasks could be scheduled to run periodically
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OpenMP

« Set of compiler directives and an API for C, C++, FORTRAN

* Provides support for parallel programming in shared-memory
environments

 |dentifies parallel regions — blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are cores

#pragma omp parallel for for (i=0;i<N;i++) {
c[i1] = a[1] + b[1];

}

Run for loop in parallel
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Grand Central Dispatch

* Apple technology for Mac OS X and 10S operating
systems

« Extensions to C, C++ languages, API, and run-time
library

* Allows identification of parallel sections

 Manages most of the details of threading

 Blockisin™}' - “{ printf("I am a
block"); }

* Blocks placed in dispatch queue

* Assigned to available thread in thread pool when removed
from queue
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Grand Central Dispatch

« Two types of dispatch queues:

« serial — blocks removed in FIFO order, queue is per
process, called main queue

 Programmers can create additional serial queues within program

« concurrent — removed in FIFO order but several may be
removed at a time

« Three system wide queues with priorities low, default, high

dispatch_queue.t queue = dispatch get_global _queue
(DISPATCH_ QUEUE_PRIORITY DEFAULT, O0);

dispatch.async (queue, "“{ printf ("I am a block."); });
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Semantics of fork() and exec()

* Does fork () duplicate only the calling thread or all
threads?

Some UNIXes have two versions of fork

 exec () usually works as normal — replace the
running process including all threads
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Signal Handling

« Signals are used in UNIX systems to notify a
process that a particular event has occurred.

* A signal handler is used to process signals

« Signal is generated by a particular event
« Signal is delivered to a process

« Signal is handled by one of two signal handlers:

e default
e user-defined

* Every signal has default handler that the kernel runs
when handling the signal

 User-defined signal handler can override default
* For single-threaded, signal delivered to process
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Signal Handling (Cont.)

Where should a signal be delivered for multi-threaded?

* Deliver the signal to the thread to which the signal applies
* Deliver the signal to every thread in the process
* Deliver the signal to certain threads in the process

« Assign a specific thread to receive all signals for the
process
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Thread Cancellation

* Terminating a thread before it has finished
* Thread to be canceled is target thread
 Two general approaches:

* Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled
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Thread Cancellation (Cont.)

* |nvoking thread cancellation requests cancellation,
but actual cancellation depends on thread state

* |f thread has cancellation disabled, cancellation
remains pending until thread enables it

* Default type is deferred

« Cancellation only occurs when thread reaches
cancellation point

* pthread testcancel(()

 Then cleanup handler is invoked

* On Linux systems, thread cancellation is handled
through signals
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Thread-Local Storage

 Thread-local storage (TLS) allows each thread to
nave its own copy of data

» Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

 Different from local variables

* Local variables visible only during single function
iInvocation

« TLS visible across function invocations
e Similar to static data

 TLS is unique to each thread
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Scheduler Activations

« Both M:M and Two-level models require communication
to maintain the appropriate number of kernel threads
allocated to the application

* Typically use an intermediate data structure between
user and kernel threads — lightweight process (LWP)

* Appears to be a virtual processor on which process can
schedule user thread to run

« Each LWP attached to kernel thread
« How many LWPs to create?

« Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the

thread library

* This communication allows an application to maintain the
correct number of kernel threads
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Windows Threads Data Structures

Spring 2018

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
kernel
stack

TEB

thread identifier

user
stack

thread-local
storage

kernel space

user space
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Linux Threads

 Linux refers to them as tasks rather than threads

* Thread creation is done through clone () system
call

* clone () allows a child task to share the address
space of the parent task (process)
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