
Week 2: Processes and Threads

(Some slides are from Silberschatz, Galvin and Gagne ©2013, and Khattab)

Processes
• Process Concept
• Process Scheduling
• Operations on Processes
• Interprocess Communication
• Examples of IPC Systems

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 2

Process Concept
• An operating system executes a variety of programs:

• Batch system – jobs
• Time-shared systems – user programs or tasks

• Process – a program in execution; process execution
must progress in sequential fashion

• Multiple parts
• The program code, also called text section
• Current activity including program counter, processor

registers
• Stack containing temporary data

• Function parameters, return addresses, local variables
• Data section containing global variables
• Heap containing memory dynamically allocated during run

time
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 3

Process in Memory

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 4

• A process is created by allocating
memory and reading certain items
from permanent storage

• Each process has an address
space

• The memory is freed (OS can re-
use it) when process is
terminated…

• So, processes are created, run,
and terminate. Is there more?

Process State
• As a process executes, it changes state

• new: The process is being created

• running: Instructions are being executed

• waiting: The process is waiting for some event to occur

• ready: The process is waiting to be assigned to a
processor

• terminated: The process has finished execution

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 5

Diagram of Process State

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 6

Process Control Block (PCB)
Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of instruction to execute next
• CPU registers – contents of all process-centric registers
• CPU scheduling information- priorities, scheduling queue

pointers
• Memory-management information – memory allocated to

the process
• Accounting information – CPU used, clock time elapsed

since start, time limits
• I/O status information – I/O devices allocated to process,

list of open files

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 7

CPU Switch From Process to Process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 8

Similar process to
switch from process
to Interrup Service
Routing (ISR), but
usually the same
stack is used.

ISR does minimal
work and set up the
rest as a regular
process for later.

Process Representation in Linux
Represented by the C structure task_struct
Example fields:

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process�s parent */
struct list_head children; /* this process�s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 9

Threads
• So far, process has a single thread of execution

• Consider having multiple program counters per
process

• Multiple locations of execution at once

• Multiple locations of control -> threads
• Must then have storage for thread details, multiple

program counters in PCB

• More on threads later

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 10

Kernel

Threads

Process

Process Scheduling and Implementation
• Maximize CPU use, quickly switch processes onto

CPU for time sharing
• Process scheduler selects among available

processes for next execution on CPU
• Maintains scheduling queues of processes

• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in main

memory, ready and waiting to execute
• Device queues – set of processes waiting for an I/O

device
• Processes migrate among the various queues

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 11

Diagram of Process State

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 12

Ready Queue And Various I/O Device Queues

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 13

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 14

Schedulers
• Short-term scheduler (or CPU scheduler) – selects which process

should be executed next and allocates CPU

• invoked frequently (milliseconds) Þ must be fast
• Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue

• invoked infrequently (seconds, minutes) Þ may be slow
• controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

• CPU-bound process – spends more time doing computations; few
very long CPU bursts

• Long-term scheduler strives for good process mix. WHY!?!?

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 15

Addition of Medium Term Scheduling
■ Medium-term scheduler can be added if degree of

multiple programming needs to decrease

● Remove process from memory, store on disk, bring back
in from disk to continue execution: swapping

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 16

Context Switch
• When CPU switches to another process, the system

must save the state of the old process and load the
saved state for the new process via a context
switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system does no

useful work while switching
• The more complex the OS and the PCB è the longer the

context switch

• Time dependent on hardware support
• Some hardware provides multiple sets of registers per

CPU è multiple contexts loaded at once
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 17

Operations on Processes
• System must provide mechanisms for:

• process creation,
• process termination,
• and so on as detailed next

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 18

Process Creation
• Parent process creates children processes, which,

in turn create other processes, forming a tree of
processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
• Parent and children share all resources
• Children share subset of parent�s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 19

Process Creation (Cont.)
• Address space

• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork() system call creates new process
• exec() system call used after a fork() to replace the

process� memory space with a new program

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 20

C Program Forking Separate Process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 21

Process Termination
• Process executes last statement and then asks the

operating system to delete it using the exit()
system call.
• Returns status data from child to parent (via wait())
• Process� resources are deallocated by operating system

• Parent may terminate the execution of children
processes using the abort() system call. Some
reasons for doing so:
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 22

Process Termination
• Some operating systems do not allow a child to exist if its

parent has terminated. If a process terminates, then all its
children must also be terminated.
• cascading termination. All children, grandchildren, etc. are

terminated.
• The termination is initiated by the operating system.

• The parent process may wait for termination of a child process
by using the wait()system call. The call returns status
information and the pid of the terminated process

pid = wait(&status);
• If no parent waiting (did not invoke wait()) process is a

zombie
• If parent terminated without invoking wait , process is an

orphan
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 23

Multiprocess Architecture – Web Browser
• If web browsers ran as single process

• If one site causes trouble, entire browser can hang or
crash

• Google Chrome Browser is multiprocess with 3
different types of processes:
• Browser process manages user interface, disk and

network I/O
• Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
• Plug-in process for each type of plug-in

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 24

Interprocess Communication
• Processes within a system may be independent or
cooperating

• Cooperating process can affect or be affected by other
processes, including sharing data

• Reasons for cooperating processes:
• Information sharing
• Computation speedup
• Modularity
• Convenience

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC
• Shared memory
• Message passing

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 25

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

(a) Message passing. (b) shared memory.

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 26

Producer-Consumer Problem
• Paradigm for cooperating processes, producer

process produces information that is consumed by a
consumer process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 27

Bounded-Buffer – Shared-Memory Solution
• Shared data

• #define BUFFER_SIZE 10
• typedef struct {
• . . .
• } item;

• item buffer[BUFFER_SIZE];
• int in = 0;
• int out = 0;

• Solution is correct, but can only use BUFFER_SIZE-1
elements

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 28

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 29

Bounded Buffer – Consumer
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next
consumed */

}
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 30

Interprocess Communication – Shared Memory
• Major issue is to provide a mechanism that will allow

the user processes to synchronize their actions when
they access shared memory.

• Synchronization is discussed in great details next
week.

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 31

Interprocess Communication – Message Passing
• IPC facility provides two operations:

• send(message)
• receive(message)

• The message size is either fixed or variable

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 32

Direct Communication
• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from

process Q

• Properties of direct links

• Links are established automatically (with send/recv)

• A link is associated with exactly one pair of
communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 33

Indirect Communication
• Messages are directed and received from mailboxes

(also referred to as ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of indirect link
• Link established only if processes share a common

mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication

links
• Link may be unidirectional or bi-directional

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 34

Indirect Communication
• Operations

• create a new mailbox (port)
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 35

Indirect Communication
• Mailbox sharing

• P1, P2, and P3 share mailbox A
• P1, sends; P2 and P3 receive
• Who gets the message?

• Solutions
1. Allow a link to be associated with at most two processes
2. Allow only one process at a time to execute a receive

operation
3. Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was
4. Other solutions?

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 36

Synchronization
• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is
received

• Blocking receive -- the receiver is blocked until a message
is available

• Non-blocking is considered asynchronous
• Non-blocking send -- the sender sends the message and

continue
• Non-blocking receive -- the receiver receives:

• A valid message, or
• Null message

• Different combinations possible
• If both send and receive are blocking, we have a rendezvous

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 37

Synchronization (Cont.)
Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 38

Buffering
• Queue of messages attached to the link.
• implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 39

Examples of IPC Systems - POSIX
• Process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR,
0666);

• Also used to open an existing segment to share it
• Set the size of the object
ftruncate(shm_fd, 4096);

• Map the shared memory object

ptr = mmap(0, 4096, PROT_WRITE,

MAP_SHARED, shm_fd, 0);

• Now the process could write to the shared memory
sprintf(ptr, "Writing to shared memory");

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 40

Communications in Client-Server Systems
• Sockets
• Remote Procedure Calls
• Pipes

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 41

Socket Communication

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 42

Pipes
• Acts as a conduit allowing two processes to

communicate
• Ordinary pipes – cannot be accessed from outside

the process that created it. Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

• Named pipes – can be accessed without a parent-
child relationship.

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 43

Ordinary Pipes
• Ordinary Pipes allow communication in standard producer-consumer

style
• Producer writes to one end (the write-end of the pipe)
• Consumer reads from the other end (the read-end of the pipe)
• Ordinary pipes are therefore unidirectional
• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes
• See Unix and Windows code samples in textbook

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 44

Named Pipes
• Named Pipes are more powerful than ordinary pipes
• Communication is bidirectional
• No parent-child relationship is necessary between the

communicating processes
• Several processes can use the named pipe for

communication
• Provided on both UNIX and Windows systems

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 45

Chapter 4: Threads
• Overview
• Multicore Programming
• Multithreading Models
• Thread Libraries
• Implicit Threading
• Threading Issues
• Operating System Examples

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 46

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 47

Concurrency vs. Parallelism
• Parallelism implies a system can perform more than

one task simultaneously
• Concurrency supports more than one task making

progress
• Single processor / core, scheduler providing concurrency

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 48

Concurrency vs. Parallelism
• Concurrent execution on single-core system:

• Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 49

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 50

Amdahl’s Law
• Identifies performance gains from adding additional

cores to an application that has both serial and
parallel components

• S is serial portion
• N processing cores

• That is, if application is 75% parallel / 25% serial,
moving from 1 to 2 cores results in speedup of 1.6
times

• As N approaches infinity, speedup approaches 1 / S
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 51

User Threads and Kernel Threads
• User threads - management done by user-level

threads library
• Three primary thread libraries:

• POSIX Pthreads
• Windows threads
• Java threads

• Kernel threads - Supported by the Kernel

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 52

Multithreading Models
• Many-to-One

• One-to-One

• Many-to-Many

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 53

Many-to-One
• Many user-level threads mapped to single kernel

thread
• One thread blocking causes all to block
• Multiple threads may not run in parallel on muticore

system because only one may be in kernel at a time
• Few systems currently use this model
• Examples:

• Solaris Green Threads
• GNU Portable Threads

user thread

kernel threadk

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 54

One-to-One
• Each user-level thread maps to a kernel thread
• Creating a user-level thread creates a kernel thread
• More concurrency than many-to-one
• Number of threads per process sometimes restricted

due to overhead
• Examples

• Windows
• Linux
• Solaris 9 and later

user thread

kernel threadkkkk

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 55

Many-to-Many Model
• Allows many user level threads to be mapped to

many kernel threads
• Allows the operating system to create a sufficient

number of kernel threads
• Examples:

• Solaris prior to version 9
• Windows with the ThreadFiber package

user thread

kernel threadkkk

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 56

Two-level Model
• Similar to M:M, except that it allows a user thread to

be bound to kernel thread

• Examples
• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

user thread

kernel threadkkk k

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 57

Thread Libraries
Two primary ways of implementing

• Library entirely in user space
• Kernel-level library supported by the OS

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 58

Pthreads
• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• Specification, not implementation
• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 59

Pthreads Example

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 60

Pthreads Example (Cont.)

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 61

Implicit Threading

• Creation and management of threads done by

compilers and run-time libraries rather than

programmers

• Three methods explored

• Thread Pools

• OpenMP

• Grand Central Dispatch

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 62

Thread Pools
• Create a number of threads in a pool where they

await work
• Advantages:

• Usually slightly faster to service a request with an existing
thread than create a new thread

• Allows the number of threads in the application(s) to be
bound by the size of the pool

• Separating task to be performed from mechanics of
creating task allows different strategies for running task
• Ex:Tasks could be scheduled to run periodically

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 63

OpenMP
• Set of compiler directives and an API for C, C++, FORTRAN

• Provides support for parallel programming in shared-memory
environments

• Identifies parallel regions – blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are cores
#pragma omp parallel for for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 64

Grand Central Dispatch
• Apple technology for Mac OS X and iOS operating

systems
• Extensions to C, C++ languages, API, and run-time

library
• Allows identification of parallel sections
• Manages most of the details of threading
• Block is in “^{ }” - ˆ{ printf("I am a
block"); }

• Blocks placed in dispatch queue
• Assigned to available thread in thread pool when removed

from queue
Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 65

Grand Central Dispatch
• Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per
process, called main queue
• Programmers can create additional serial queues within program

• concurrent – removed in FIFO order but several may be
removed at a time
• Three system wide queues with priorities low, default, high

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 66

Semantics of fork() and exec()
• Does fork()duplicate only the calling thread or all

threads?
• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the
running process including all threads

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 67

Signal Handling
• Signals are used in UNIX systems to notify a

process that a particular event has occurred.
• A signal handler is used to process signals

• Signal is generated by a particular event
• Signal is delivered to a process
• Signal is handled by one of two signal handlers:

• default
• user-defined

• Every signal has default handler that the kernel runs
when handling the signal
• User-defined signal handler can override default
• For single-threaded, signal delivered to process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 68

Signal Handling (Cont.)
Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific thread to receive all signals for the

process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 69

Thread Cancellation
• Terminating a thread before it has finished
• Thread to be canceled is target thread
• Two general approaches:

• Asynchronous cancellation terminates the target thread
immediately

• Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 70

Thread Cancellation (Cont.)
• Invoking thread cancellation requests cancellation,

but actual cancellation depends on thread state
• If thread has cancellation disabled, cancellation

remains pending until thread enables it
• Default type is deferred

• Cancellation only occurs when thread reaches
cancellation point
• pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled
through signals

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 71

Thread-Local Storage
• Thread-local storage (TLS) allows each thread to

have its own copy of data
• Useful when you do not have control over the thread

creation process (i.e., when using a thread pool)
• Different from local variables

• Local variables visible only during single function
invocation

• TLS visible across function invocations
• Similar to static data

• TLS is unique to each thread

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 72

Scheduler Activations
• Both M:M and Two-level models require communication

to maintain the appropriate number of kernel threads
allocated to the application

• Typically use an intermediate data structure between
user and kernel threads – lightweight process (LWP)
• Appears to be a virtual processor on which process can

schedule user thread to run
• Each LWP attached to kernel thread
• How many LWPs to create?

• Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the
thread library

• This communication allows an application to maintain the
correct number of kernel threads

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 73

Windows Threads Data Structures

user spacekernel space

pointer to
parent process

thread start
 address

ETHREAD

KTHREAD

•
•
•

kernel
stack

scheduling
and

synchronization
information

•
•
•

user
stack

thread-local
storage

thread identifier

TEB

•
•
•

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 74

Linux Threads
• Linux refers to them as tasks rather than threads
• Thread creation is done through clone() system

call
• clone() allows a child task to share the address

space of the parent task (process)

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 75

