
Week 2: Processes and Threads

(Some slides are from Silberschatz, Galvin and Gagne ©2013, and Khattab)



Processes
• Process Concept
• Process Scheduling
• Operations on Processes
• Interprocess Communication
• Examples of IPC Systems
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Process Concept
• An operating system executes a variety of programs:

• Batch system – jobs
• Time-shared systems – user programs or tasks

• Process – a program in execution; process execution 
must progress in sequential fashion

• Multiple parts
• The program code, also called text section
• Current activity including program counter, processor 

registers
• Stack containing temporary data

• Function parameters, return addresses, local variables
• Data section containing global variables
• Heap containing memory dynamically allocated during run 

time
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Process in Memory
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• A process is created by allocating 
memory and reading certain items 
from permanent storage

• Each process has an address 
space

• The memory is freed (OS can re-
use it) when process is 
terminated…

• So, processes are created, run, 
and terminate. Is there more?



Process State
• As a process executes, it changes state

• new:  The process is being created

• running:  Instructions are being executed

• waiting:  The process is waiting for some event to occur

• ready:  The process is waiting to be assigned to a 
processor

• terminated:  The process has finished execution

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 5



Diagram of Process State
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Process Control Block (PCB)
Information associated with each process 
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of instruction to execute next 
• CPU registers – contents of all process-centric registers
• CPU scheduling information- priorities, scheduling queue 

pointers
• Memory-management information – memory allocated to 

the process
• Accounting information – CPU used, clock time elapsed 

since start, time limits
• I/O status information – I/O devices allocated to process, 

list of open files
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CPU Switch From Process to Process
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Similar process to 
switch from process 
to Interrup Service 
Routing (ISR), but 
usually the same 
stack is used.

ISR does minimal 
work and set up the 
rest as a regular 
process for later.



Process Representation in Linux
Represented by the C structure task_struct
Example fields:

pid t_pid; /* process identifier */ 
long state; /* state of the process */ 
unsigned int time_slice /* scheduling information */ 
struct task_struct *parent; /* this process�s parent */ 
struct list_head children; /* this process�s children */ 
struct files_struct *files; /* list of open files */ 
struct mm_struct *mm; /* address space of this process */
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Threads
• So far, process has a single thread of execution

• Consider having multiple program counters per 
process

• Multiple locations of execution at once

• Multiple locations of control -> threads
• Must then have storage for thread details, multiple 

program counters in PCB

• More on threads later
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Kernel

Threads

Process 



Process Scheduling and Implementation
• Maximize CPU use, quickly switch processes onto 

CPU for time sharing
• Process scheduler selects among available 

processes for next execution on CPU
• Maintains scheduling queues of processes

• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in main 

memory, ready and waiting to execute
• Device queues – set of processes waiting for an I/O 

device
• Processes migrate among the various queues
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Diagram of Process State
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

Queueing diagram represents queues, resources, flows
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Schedulers
• Short-term scheduler  (or CPU scheduler) – selects which process 

should be executed next and allocates CPU

• invoked frequently (milliseconds) Þ must be fast
• Long-term scheduler  (or job scheduler) – selects which processes 

should be brought into the ready queue

• invoked  infrequently (seconds, minutes) Þ may be slow
• controls the degree of multiprogramming

• Processes can be described as either:

• I/O-bound process – spends more time doing I/O than 
computations, many short CPU bursts

• CPU-bound process – spends more time doing computations; few 
very long CPU bursts

• Long-term scheduler strives for good process mix.  WHY!?!?
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Addition of Medium Term Scheduling
■ Medium-term scheduler  can be added if degree of 

multiple programming needs to decrease

● Remove process from memory, store on disk, bring back 
in from disk to continue execution: swapping
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Context Switch
• When CPU switches to another process, the system 

must save the state of the old process and load the 
saved state for the new process via a context 
switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system does no 

useful work while switching
• The more complex the OS and the PCB è the longer the 

context switch

• Time dependent on hardware support
• Some hardware provides multiple sets of registers per 

CPU è multiple contexts loaded at once
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Operations on Processes
• System must provide mechanisms for:

• process creation,
• process termination, 
• and so on as detailed next

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 18



Process Creation
• Parent process creates children processes, which, 

in turn create other processes, forming a tree of 
processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
• Parent and children share all resources
• Children share subset of parent�s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate
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Process Creation (Cont.)
• Address space

• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork() system call creates new process
• exec() system call used after a fork() to replace the 

process� memory space with a new program
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C Program Forking Separate Process
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Process Termination
• Process executes last statement and then asks the 

operating system to delete it using the exit()
system call.
• Returns  status data from child to parent (via wait())
• Process� resources are deallocated by operating system

• Parent may terminate the execution of children 
processes  using the abort() system call.  Some 
reasons for doing so:
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• The parent is exiting and the operating systems does not 

allow a child to continue if its parent terminates
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Process Termination
• Some operating systems do not allow a child to exist if its 

parent has terminated.  If a process terminates, then all its 
children must also be terminated.
• cascading termination.  All children, grandchildren, etc.  are  

terminated.
• The termination is initiated by the operating system.

• The parent process may wait for termination of a child process 
by using the wait()system call. The call returns status 
information and the pid of the terminated process

pid = wait(&status); 
• If no parent waiting (did not invoke wait()) process is a 

zombie
• If parent terminated without invoking wait , process is an 

orphan
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Multiprocess Architecture – Web Browser
• If web browsers ran as single process

• If one site causes trouble, entire browser can hang or 
crash

• Google Chrome Browser is multiprocess with 3 
different types of processes: 
• Browser process manages user interface, disk and 

network I/O
• Renderer process renders web pages, deals with HTML, 

Javascript. A new renderer created for each website 
opened
• Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits
• Plug-in process for each type of plug-in
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Interprocess Communication
• Processes within a system may be independent or 
cooperating

• Cooperating process can affect or be affected by other 
processes, including sharing data

• Reasons for cooperating processes:
• Information sharing
• Computation speedup
• Modularity
• Convenience

• Cooperating processes need interprocess communication 
(IPC)

• Two models of IPC
• Shared memory
• Message passing
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Communications Models 

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

(a) Message passing.  (b) shared memory. 
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Producer-Consumer Problem
• Paradigm for cooperating processes, producer

process produces information that is consumed by a 
consumer process

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 27



Bounded-Buffer – Shared-Memory Solution
• Shared data

• #define BUFFER_SIZE 10
• typedef struct {
• . . .
• } item;

• item buffer[BUFFER_SIZE];
• int in = 0;
• int out = 0;

• Solution is correct, but can only use BUFFER_SIZE-1 
elements
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Bounded-Buffer – Producer

item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

} 
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Bounded Buffer – Consumer
item next_consumed; 

while (true) {
while (in == out) 

; /* do nothing */
next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next 
consumed */ 

} 
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Interprocess Communication – Shared Memory
• Major issue is to provide a mechanism that will allow 

the user processes to synchronize their actions when 
they access shared memory. 

• Synchronization is discussed in great details next 
week.
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Interprocess Communication – Message Passing
• IPC facility provides two operations:

• send(message)
• receive(message)

• The message size is either fixed or variable
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Direct Communication
• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from 

process Q

• Properties of direct links

• Links are established automatically (with send/recv)

• A link is associated with exactly one pair of 
communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional
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Indirect Communication
• Messages are directed and received from mailboxes

(also referred to as ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of indirect link
• Link established only if processes share a common 

mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication 

links
• Link may be unidirectional or bi-directional
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Indirect Communication
• Operations

• create a new mailbox (port)
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from 
mailbox A
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Indirect Communication
• Mailbox sharing

• P1, P2, and P3 share mailbox A
• P1, sends; P2 and P3 receive
• Who gets the message?

• Solutions
1. Allow a link to be associated with at most two processes
2. Allow only one process at a time to execute a receive 

operation
3. Allow the system to select arbitrarily the receiver.  Sender 

is notified who the receiver was
4. Other solutions?
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Synchronization
• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is 
received

• Blocking receive -- the receiver is  blocked until a message 
is available

• Non-blocking is considered asynchronous
• Non-blocking send -- the sender sends the message and 

continue
• Non-blocking receive -- the receiver receives:

• A valid message,  or 
• Null message

• Different combinations possible
• If both send and receive are blocking, we have a rendezvous
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Synchronization (Cont.)
Producer-consumer becomes trivial

message next_produced; 

while (true) {
/* produce an item in next produced */ 

send(next_produced); 

} 

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}
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Buffering
• Queue of messages attached to the link.
• implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits
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Examples of IPC Systems - POSIX
• Process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 
0666);

• Also used to open an existing segment to share it 
• Set the size of the object
ftruncate(shm_fd, 4096); 

• Map the shared memory object

ptr = mmap(0, 4096, PROT_WRITE, 

MAP_SHARED, shm_fd, 0);

• Now the process could write to the shared memory
sprintf(ptr, "Writing to shared memory");
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Communications in Client-Server Systems
• Sockets
• Remote Procedure Calls
• Pipes
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Socket Communication
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Pipes
• Acts as a conduit allowing two processes to 

communicate
• Ordinary pipes – cannot be accessed  from outside 

the process that created it. Typically, a parent 
process creates a pipe and uses it to communicate 
with a child process that it created. 

• Named pipes – can be accessed without a parent-
child relationship.
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Ordinary Pipes
• Ordinary Pipes allow communication in standard producer-consumer 

style
• Producer writes to one end (the write-end of the pipe)
• Consumer reads from the other end (the read-end of the pipe)
• Ordinary pipes are therefore unidirectional
• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes
• See Unix and Windows code samples in textbook

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 44



Named Pipes
• Named Pipes are more powerful than ordinary pipes
• Communication is bidirectional
• No parent-child relationship is necessary between the 

communicating processes
• Several processes can use the named pipe for 

communication
• Provided on both UNIX and Windows systems
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Chapter 4: Threads
• Overview
• Multicore Programming
• Multithreading Models
• Thread Libraries
• Implicit Threading
• Threading Issues
• Operating System Examples
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Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread
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Concurrency vs. Parallelism
• Parallelism implies a system can perform more than 

one task simultaneously
• Concurrency supports more than one task making 

progress
• Single processor / core, scheduler providing concurrency
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Concurrency vs. Parallelism
• Concurrent execution on single-core system:

• Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…
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Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process
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Amdahl’s Law
• Identifies performance gains from adding additional 

cores to an application that has both serial and 
parallel components

• S is serial portion
• N processing cores

• That is, if application is 75% parallel / 25% serial, 
moving from 1 to 2 cores results in speedup of 1.6 
times

• As N approaches infinity, speedup approaches 1 / S
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User Threads and Kernel Threads
• User threads - management done by user-level 

threads library
• Three primary thread libraries:

• POSIX Pthreads
• Windows threads
• Java threads

• Kernel threads - Supported by the Kernel
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Multithreading Models
• Many-to-One

• One-to-One

• Many-to-Many
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Many-to-One
• Many user-level threads mapped to single kernel 

thread
• One thread blocking causes all to block
• Multiple threads may not run in parallel on muticore

system because only one may be in kernel at a time
• Few systems currently use this model
• Examples:

• Solaris Green Threads
• GNU Portable Threads

user thread

kernel threadk
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One-to-One
• Each user-level thread maps to a kernel thread
• Creating a user-level thread creates a kernel thread
• More concurrency than many-to-one
• Number of threads per process sometimes restricted 

due to overhead
• Examples

• Windows
• Linux
• Solaris 9 and later

user thread

kernel threadkkkk
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Many-to-Many Model
• Allows many user level threads to be mapped to 

many kernel threads
• Allows the  operating system to create a sufficient 

number of kernel threads
• Examples:

• Solaris prior to version 9
• Windows  with the ThreadFiber package

user thread

kernel threadkkk
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Two-level Model
• Similar to M:M, except that it allows a user thread to 

be bound to kernel thread

• Examples
• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

user thread

kernel threadkkk k
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Thread Libraries
Two primary ways of implementing

• Library entirely in user space
• Kernel-level library supported by the OS
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Pthreads
• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• Specification, not implementation
• Common in UNIX operating systems (Solaris, Linux, 

Mac OS X)
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Pthreads Example
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Pthreads Example (Cont.)
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Implicit Threading

• Creation and management of threads done by 

compilers and run-time libraries rather than 

programmers

• Three methods explored

• Thread Pools

• OpenMP

• Grand Central Dispatch
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Thread Pools
• Create a number of threads in a pool where they 

await work
• Advantages:

• Usually slightly faster to service a request with an existing 
thread than create a new thread

• Allows the number of threads in the application(s) to be 
bound by the size of the pool

• Separating task to be performed from mechanics of 
creating task allows different strategies for running task
• Ex:Tasks could be scheduled to run periodically
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OpenMP
• Set of compiler directives and an API for C, C++, FORTRAN 

• Provides support for parallel programming in shared-memory 
environments

• Identifies parallel regions – blocks of code that can run in 
parallel

#pragma omp parallel 

Create as many threads as there are cores
#pragma omp parallel for for(i=0;i<N;i++) { 

c[i] = a[i] + b[i]; 

} 

Run for loop in parallel
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Grand Central Dispatch
• Apple technology for Mac OS X and iOS operating 

systems
• Extensions to C, C++ languages, API, and run-time 

library
• Allows identification of parallel sections
• Manages most of the details of threading
• Block is in “^{ }” - ˆ{ printf("I am a 
block"); } 

• Blocks placed in dispatch queue
• Assigned to available thread in thread pool when removed 

from queue
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Grand Central Dispatch
• Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per 
process, called main queue
• Programmers can create additional serial queues within program

• concurrent – removed in FIFO order but several may be 
removed at a time
• Three system wide queues with priorities low, default, high
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Semantics of fork() and exec()
• Does fork()duplicate only the calling thread or all 

threads?
• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the 
running process including all threads
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Signal Handling
• Signals are used in UNIX systems to notify a 

process that a particular event has occurred.
• A signal handler is used to process signals

• Signal is generated by a particular event
• Signal is delivered to a process
• Signal is handled by one of two signal handlers:

• default
• user-defined

• Every signal has default handler that the kernel runs 
when handling the signal
• User-defined signal handler can override default
• For single-threaded, signal delivered to process
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Signal Handling (Cont.)
Where should a signal be delivered for multi-threaded? 

• Deliver the signal to the thread to which the signal applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific thread to receive all signals for the 

process
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Thread Cancellation
• Terminating a thread before it has finished
• Thread to be canceled is target thread
• Two general approaches:

• Asynchronous cancellation terminates the target thread 
immediately

• Deferred cancellation allows the target thread to 
periodically check if it should be cancelled
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Thread Cancellation (Cont.)
• Invoking thread cancellation requests cancellation, 

but actual cancellation depends on thread state
• If thread has cancellation disabled, cancellation 

remains pending until thread enables it
• Default type is deferred

• Cancellation only occurs when thread reaches 
cancellation point
• pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled 
through signals
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Thread-Local Storage
• Thread-local storage (TLS) allows each thread to 

have its own copy of data
• Useful when you do not have control over the thread 

creation process (i.e., when using a thread pool)
• Different from local variables

• Local variables visible only during single function 
invocation

• TLS visible across function invocations
• Similar to static data

• TLS is unique to each thread

Spring 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 72



Scheduler Activations
• Both M:M and Two-level models require communication 

to maintain the appropriate number of kernel threads 
allocated to the application

• Typically use an intermediate data structure between 
user and kernel threads – lightweight process (LWP)
• Appears to be a virtual processor on which process can 

schedule user thread to run
• Each LWP attached to kernel thread
• How many LWPs to create?

• Scheduler activations provide upcalls - a communication 
mechanism from the kernel to the upcall handler in the 
thread library

• This communication allows an application to maintain the 
correct number of kernel threads
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Windows Threads Data Structures

user spacekernel space

pointer to  
parent process

thread start 
 address

ETHREAD

KTHREAD

• 
• 
•

kernel 
stack

scheduling 
and 

synchronization
information

• 
• 
•

user 
stack

thread-local 
storage

thread identifier

TEB

• 
• 
•
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Linux Threads
• Linux refers to them as tasks rather than threads
• Thread creation is done through clone() system 

call
• clone() allows a child task to share the address 

space of the parent task (process)
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