
Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Real-Time Scheduling:
EDF and RM

Daniel Mosse
University of Pittsburgh

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Acronyms

• RT = real-time (timeliness is as important as functionality)
• HRT = hard real-time (catastrophic consequences)
• SRT = soft real-time (typically monetary consequences)
• NRT = non real-time (i.e., general purpose systems)
• WCET = Worst-case execution time
• EDF = Earliest Deadline First
• RM = Rate Monotonic
• OS = Operating System

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RT Scheduling

• What should the system know, in addition to NRT tasks?
• Two approaches:

– OS supports RT. How can this info be transmitted to the OS?
– Support for RT is outside, extra tool; OS supports fixed

priority scheduling. What are the advantages and
disadvantages?

• Hardware support? Timer card, with high resolution.
• CPU scheduling support: predictability.
• Same for disk, sensors, actuators, and other peripherals
• Low overhead a plus, but also in NRTSs

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RT: Admission Control

• The basis of all HRT systems is that, for processes or
threads to be created, need to pass admission control

• In NRT systems admission control typically is concerned
with starvation of processes due to lack of resources

• In RT systems, the idea is the same, but more constraints
are present:
– All deadlines must be met (i.e., the response time is before

deadline)
– Enough instances of all resources must be present
– Periodic invocations must be activated within certain latencies

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

State Diagram

• Create: PCB and other resources are setup
• End: resources held are returned to the OS (freed)
• Context switching: saves HW context; updates PCB
• States are typically implemented as queues, lists, sets

end

ready

blocked

running

create
scheduleIO

completed

IO
completed

IO
requestedprocess

completed

process
initialized

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Complete State Diagram

process
started

end

ready

blocked

running

create
scheduleIO

completed

IO
completed

IO
requestedprocess

completed

admission
control

suspended

process
submitted

temporary
suspension process

returns

These two states check for sufficient
resources in the system

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Types of RT Scheduling

• Dynamic vs. Static
– Dynamic schedule computed at run-time based on tasks really

executing
– Static schedule done at compile time for all possible tasks

• Preemptive permits one task to preempt another one of
lower priority, but non-preemptive does not require state to
be saved… This lecture considers ONLY preemptive systems

Source: Koopman

Source: Kopetz

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Static vs Dynamic Schedules

• Static schedules are great in some systems
• Time-triggered schedules (build a priori) are also great in

some systems
• BUT, sometimes, when things are dynamic, dynamic

schedules offer more flexibility, easier maintenance, and
better resource utilization
– WCET is not the worst case
– Tasks that are supposed to start are not ready to start
– An urgent task is scheduled when it is scheduled, no earlier
– Need to build a schedule to the Least Common Multiple of the

periods of all tasks in the system (perhaps exponential)
– When a task changes, need to rebuild the schedule

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Dynamic (priority-based) Scheduling

• One would like to send the tasks to the system, and let the
system execute them and guarantee deadlines are met

• For that, we need admission control: clearly, one cannot use
more than 100% of the CPU cycles that exist

• Admission control is a way to analyze the tasks so that one
can guarantee BEFORE RUNNING that deadlines are met

• Then submit the tasks to the system, and the scheduler
knows how to schedule the tasks accordingly
– Rate Monotonic schedulers give higher priority to tasks with

smaller period (think of a smaller deadline!)
– Earliest Deadline First schedulers give higher priority to tasks

with (guess!) earliest deadline (again, think of a smaller
deadline!)

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priorities as Scheduling

• In both dynamic scheduling algorithms that we consider here
(EDF and RM), the priorities of the tasks are a guide for the
scheduler to dispatch the task

• In EDF, it is the explicit deadline that functions as the
priority, and therefore the programmer or system
integrator has to know about deadlines

• In RM, the period of the task determines the priority, and
therefore the system integrator has to have global
knowledge of all tasks’ periods (so that s/he can determine
whether a task is higher or lower priority)

• In any case, the priorities can be manipulated in an explicit
or implicit manner by the programmer or system integrator

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Dynamic Scheduling Notation
WCET

P

• Example is a periodic RT task, with 3 instances
• Assume non-preemptive system with 5 Restrictions:

1. Tasks {Ti} are periodic, with hard deadlines and no jitter
2. Tasks and instances are completely independent
3. Deadline = period (pi = di)
4. WCET ci is known and constant
5. Context switching is free (zero cost)

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Earliest Deadline First (EDF)

• Compare with your own tasks, such as work tasks
• Preemptive or non-preemptive, EDF is optimal (in the sense

that it will find a feasible schedule if one exists)
• A feasible schedule is one in which all deadlines are met
• EDF works with preemptive periodic tasks: there is a

minimum interarrival between instances. Could instances be
separated by more than one period? How about less?

• Only requirement is to meet all the deadlines
• With a single task, the requirement is: U = c/p ≤ 1, that is, a

task must be executable in a single CPU

Pi

Ci

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

EDF (cont)

• Did you notice the characteristic of EDF: the priority of the
tasks is not fixed, relative to each other

• Again, compare with daily tasks: which has priority?
• For example, let there be 2 tasks ready in the system

• Which executes first, when? What’s the order?

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

EDF (cont)

• The same math for a single task also works for multiple
tasks:
– A schedule is feasible iff U < 1, that is, ∑ ci/ pi ≤ 100%
– The share (utilization) of each task is obviously also restricted,

but the combined utilization cannot exceed 100%
• For EDF, every time a new instance is ready, there is a need

for checking whether this task is the highest priority one
• The relative priority of tasks (see previous slide) can

change, depending on the instances, time, etc.
• Can we do better than having to perform all these checks?

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Rate Monotonic (RM)

• In RM, the priority of the tasks is fixed with respect to
each other.

• The priority is computed as the inverse of the period.
• Dissect the name: rate (which means it depends on the

period) and monotonic (increases or decreases only)
• Reasoning behind it: the more frequent a developer wants to

do a task, the higher priority it should have.
• How efficient is it? as efficient as EDF?

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM admission control

• Let us consider the easy and good case for RM: harmonic
periods (that is, all periods are multiples of each other)

• In this case, the admission control for RM is the same as it
is for EDF
– A schedule is feasible iff U < 1, that is, ∑ ci/ pi ≤ 100%
– The share (utilization) of each task is obviously also restricted,

but the combined utilization cannot exceed 100%
• Note that the task with the shorter period will also be the

task with the earliest deadline at any given time

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM (cont)

• Which scheduling policy is more efficient? Can RM be any
more efficient than EDF? Can RM be any more efficient than
EDF?

• Depends on how one looks at efficiency, which can be
defined as less dispatching (context switching) overhead,
can be defined as higher resource utilization without
considering overhead, or a combination thereof

• In general, RM may allow for less CPU to be used. Example:

Wasted CPU

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM (cont)

• So, in general, the CPU cannot be fully utilized when tasks
are scheduled following RM, and the admission control has to
reflect this issue.

• This is because RM is for fixed-priority tasks (tasks’
priorities do not change in time, they’re always the same, and
therefore their relative priority is also the same)

• Liu and Layland devised a test to check whether task sets
could be scheduled:
– If ∑ ci/ pi ≤ n (21/n – 1), then all n tasks will meet their

deadlines
• However, RM can be implemented in hardware

– How? (see next slide)
– Is it worth it?
– It reduces the scheduling overhead, memory overhead, stack

overhead

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Implementing RM in hardware

• Good for control systems, in which sensors are separate
devices: temperature, pressure, RPM, acceleration, smell,
etc

• Devices also must be able to send signals to the CPU to
activate the tasks on a periodic basis

• Associate each device to an interrupt priority, according to
the inverse of the period

• Tasks are handled by a PIC (programmable interrupt
controller) which activates interrupt service routines (ISRs)

• The tasks must be cooperative, since they will execute on
the same stack (like threads, but not really threads)

• Advantages: Low context switch overhead, no scheduling
overhead, low memory allocation overhead, highly
collaborative

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Implementing RM in “regular” OSs

• Most unix-like OSs nowadays provide the means for what
they call “real-time priorities”

• These are tasks that run above the NRT tasks, at fixed
priorities

• The OS does not need to know what the period and/or
deadline for the tasks are, but the system integrator has to
determine the priority of each task

• Since RM has a well-defined, fixed-priority relation between
priority and period, it’s easy to do.

• Note that this only defines the order to run the processes,
but does NOT make it a RT OS!!! All the other issues
(interrupts, disks, deamons, etc) are still NRT!!!

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Exact Characterization and
Response Time Analysis

• How can the admission control tests (also called feasibility
test) be simplified or complicated?

• The LL
• Take the task with the highest priority. It’s response time

is simply C1

• T2 has a different response time. How can we compute it?
• R2 = C1 + C2. Is this correct? Why or why not?
• R2 = (P2 / P1) C1 + C2.
• Is this correct? Why or why not?

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM response time analysis

• R2 = P2 / P1 C1 + C2.
• Is this correct? Why or why not?
• What is/are the condition/s we have to check?
• How many periods do we have to check this condition?
• May also be called fixed point computation, since all this is

done when response time does not increase anymore

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM: response time analysis

• Clearly, R2 ≥ C1 + C2, but it may be that R2 > C1 + C2

• This will happen if the second instance of T1 preempts T2

• In this case, R2 ≥ 2C1 + C2. In fact, if the third instance of T1
preempts T2 also, R2 ≥ 3C1 + C2.

• We can derive a recurrence relation, and keep increasing R2
R2

2 = (R1
2 /P1)C1 + C2

• The recurrence stops when
– Ri

j = Ri+1
j (response time does not increase further: accept task)

– Ri
j > Dj (task misses the deadline: reject task)

• This test has to be done in increasing order of priority; note
that this is only for FIXED priority scheduling of RT tasks

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM: response time analysis algorithm

• Again, consider only 2 tasks for simplicity
• R1 = C1 no problem. R2 ?

– case 1: C2 ≤ P1 - C1 which causes T2
to finish before the end of P1,
which means that R2 = C1 + C2

– case 2: C2 > P1 - C1 which causes
the new instance of T1 to preempt T2 ,
which means that R2 ≥ 2C1 + C2

– If the preemption is done once, R2 = 2C1 + C2
– However, by preempting T2 the response time of T2 is

postponed, which may cause preemption to occur twice, and
thus R2 = 3C1 + C2

– And so on

R2 P1R1
P2

R2

P1R1
P2

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM: response time analysis example

• Consider the following tasks <C, P>
• T1=<1,2> T2=<2,5>

– R1 = C1 = 1 but R2?
– R0

2 = 2+1= 3, at least; that is larger than P1
– R1

2 = ceil(3/2) 2 = 2 * 2 = 4
– R2

2 = ceil(4/2) 2 = 2 * 2 = 4
– Since R1

2 = R2
2 the task is accepted. on to the next task

• We do this type of computation for every task in order of
priority

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Resource Sharing

• When resources are shared (resources can be anything
threads use, such as memory locations, variables, devices,
etc), there has to be a synchronization mechanism

• Usually, semaphores and/or lock variables are used (rarely
monitors are used: do not pause this program for a special
monitors insert in the last slide)

• Semaphores may cause priority inversion: a high priority
task is blocked by a low priority task (same with non-
preemptive scheduling)

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priority Inversion

High Priority Task

low priority Task

other tasks

starts

becomes active

blocks on mutex
High pr task misses
its deadline

Source: Bettatigets preempted
locks mutex

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Disallow Preemption of Tasks in Critical Section

• Analysis identical to analysis with non-preemptable portions
• Define: β = maximum duration of all critical sections
• Task Ti is schedulable if

• Problem: critical sections can be rather long.

0 5 10

)(
1

iF
pp

e
X

i

i

k k

k =+∑
=

β

Source: Bettati

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priority Inheritance

• Jobs that are not blocked are scheduled according
to the scheduling algorithm

• Priority Inheritance:
– Basic strategy for controlling priority inversion:

Let π be the priority of J
and π’ be the priority of J’
and π’ < π
then the priority of J’ is set to π whenever J is blocked by J’

• Priority Inheritance is transitive

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priority Inheritance controls PrioInv

T1

T2

T3

without priority inheritance

T3 blocks T2 here

T3 blocks T1 here
T3’s prio=T1’s prio

T1

T2

T3

with priority inheritance

Source: Bettati

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Problem with priority inheritance
• The main problem with priority inheritance is that it may

cause deadlocks
• If there are more than one resource, and the tasks are

going to use them, a deadlock is possible. Example:
– Low priority task, L, locks a resource

(acquires S1)
– L gets preempted by a higher priority task, H,

locks a second resource (acquires S2). Since L
is not using S2, no priority is inherited

– H tries to get S1, and blocks
– L is promoted, resumes, tries to get S2,

and blocks
– DEADLOCK!

Source: Tindell’00

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priority Ceiling?

• The Priority Ceiling Protocol solves the deadlock problem by
raising the priority of the task to the highest priority of all
the tasks that may lock the resource in question

• When a task Ti attempts to execute one of its critical
sections, it will be suspended unless its priority is higher
than the priority ceiling of all semaphores currently locked
by tasks other than Ti

• When a task blocks other tasks (directly or indirectly), it
inherits the highest of their priorities

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Priority Ceiling Protocol: Example

• Similar to the example of deadlocks
• L locks S1, but now it immediately

gets promoted
• So, it continues to execute, acquires

S2 without being preempted by other
higher-priority tasks

• When it unlocks (releases) S1, it is
returned to its original priority

• THEN (and only then) it can get
preempted

• NO DEADLOCK

Source: Tindell’00

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Response time analysis with shared resources

• Before, we had RM deal with only independent tasks
• Adding resources adds the problem of priority inversion, and

therefore, a means of dealing with it is needed.
• We know that priority inversion will cause some high priority

tasks to be delayed. We account for this extra delay in
doing schedulability analysis?
– Add a term for blocking (or PrioInv) in the utilization equations

for RM
– This extra term accounts for the amount of time that another

task may be blocking this task during execution

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Overheads

• Up to now, we have an ideal
system, with the instanta-
neous preemption, context
switch, scheduling, etc

• How can one incorporate these overheads in the feasibility
tests? How much will they influence the issue?
– It’s not free, but as CPUs gets faster it gets cheaper compared

to real time
• In a similar way to the priority inversion issues, we can add

another term to the utilization and feasibility equations,
reflecting the overheads.

• Biggest issue seems to be repopulating the cache on a
context switch

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

RM/EDF during overloads

• Overloads can be caused when a task takes a little longer
than WCET; possible causes
– WCET tool not accurate
– Tests didn’t cover whole input spectrum

• In RM, the tasks with higher priority will always run, and the
tasks with lower priority will suffer
– Not fair, since offending task may be high-priority task
– Predictable: high-priority tasks are more important (are they?)

• Although EDF is more efficient (can get 100% utilization), it
suffers from a big problem under overloads:
– If the schedule is tightly packed (all tasks finish exactly at

their deadlines) and the first task takes a little longer than
WCET, then all tasks will miss their deadlines

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

EDF with precedence constraints
• Consider a task graph: nodes are tasks, edges are

precedence constraints
• One only deadline for the entire application
• How can we apply EDF?
• Easy solution considers semaphores
• Complicate problem: all tasks are ready at time 0,

and no semaphores are used.
• A single graph will have a single deadline

– Do a topological sort of the graph
– Start from the bottom and reduce the deadline of each task by

a little bit (it does not matter how much)
– Consider all tasks to be independent
– Run EDF

A

B

C

D

E

F

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Least Laxity Scheduling

• Least Laxity is also optimal for single processors (like EDF)
• If sum of task utils is less than 100%, task set is feasible
• Algorithm: dispatch the task with the smallest laxity, which is

the largest amount of time that a task can be delayed (some
type of procrastination index)

• In a sense, it is similar to EDF, in that it runs the most urgent
tasks in the set (the metric by which urgency is measure
differs, though)

• A problem occurs with LLF, when tasks have the same laxity:
too many preemptions

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Least Laxity Scheduling (cont)

• Take 2 tasks with requirements <3,6>
• The EDF schedule would be the following:

• However, in the LLF schedule, both tasks have the same
laxity when they become ready.

• Then, one task runs, its laxity remains the same, while the
other task’s laxity decreases. LLF schedule is

• As can be seen from the figures, the schedule for LLF has
many preemptions/context switches

Aug 2, 2004 Daniel Mosse (mosse@cs.pitt.edu)

Summary

• Dynamic Scheduling is a Good Thing, when your system is
somewhat predictable (periodic)

• Allows for flexibility, but designers have to beware of
– Priority Inversion
– Deadlocks
– Overhead

• Designers typically choose between RM and EDF
• EDF is more efficient in general, but RM is as efficient (and

more, if considering overhead) for harmonic task sets

	Real-Time Scheduling:EDF and RM
	Acronyms
	RT Scheduling
	RT: Admission Control
	State Diagram
	Complete State Diagram
	Types of RT Scheduling
	Static vs Dynamic Schedules
	Dynamic (priority-based) Scheduling
	Priorities as Scheduling
	Dynamic Scheduling Notation
	Earliest Deadline First (EDF)
	EDF (cont)
	EDF (cont)
	Rate Monotonic (RM)
	RM admission control
	RM (cont)
	RM (cont)
	Implementing RM in hardware
	Implementing RM in “regular” OSs
	Exact Characterization and Response Time Analysis
	RM response time analysis
	RM: response time analysis
	RM: response time analysis algorithm
	RM: response time analysis example
	Resource Sharing
	Priority Inversion
	Disallow Preemption of Tasks in Critical Section
	Priority Inheritance
	Priority Inheritance controls PrioInv
	Problem with priority inheritance
	Priority Ceiling?
	Priority Ceiling Protocol: Example
	Response time analysis with shared resources
	Overheads
	RM/EDF during overloads
	EDF with precedence constraints
	Least Laxity Scheduling
	Least Laxity Scheduling (cont)
	Summary

