

Who am I?
Milos Hauskrecht
An assistant professor at CS department
• Secondary affiliations: ISP, CBMI and UPCI
• Research: AI
 Planning, optimization and learning in the presence of uncertainty
Applications:
 Biomedical informatics.
 Modeling and control of large stochastic network systems
 Decision-making for patient-management.
 Anomaly detection in clinical databases.
CS 2001 ML in Bioinformatics

Bioinformatics

Bioinformatics

Application of CS and informatics to biological and clinical sciences

- Bioinformatics is the field of science in which biology, computer science, and information technology merge to form a single discipline. The ultimate goal of the field is to enable the discovery of new biological insights as well as to create a global perspective from which unifying principles in biology can be discerned
- Machine Learning
 - An area that studies methods and the design of computer programs that let us learn from past experience

This talk

- Overview of data sources
 - 1. DNA microarray data
 - 2. SELDI-TOF-MS proteomic data profiles
 - 3. Luminex arrays

• Basics about the methods of analysis

- Classification
- Evaluation

Disease detection

Objective:

• Build a classification model that is capable to determine with a high accuracy the presence or absence of the disease in future patients

Typical steps:

- Data preprocessing:
- Feature selection
- Building of a classification model
- Evaluation
- Validation

Feature filtering
Solution: identify a small set of features that are good individual discriminators
Univariate scores in PDAP :
– Fisher score
 t-test score
 Wilcoxon rank-sum score
– etc.
Univariate Scores:
 – can be ordered relative to each other
 Are often related to some statistic (p-value)
• Features picked using a variety of criteria:
– Best k features
- p-value or False discovery rate (FDR) thresholds
CS 2001 ML in Bioinformatics

Differentially expressed features

Solution: Pick only features that are differentially are good individual discriminators for the case versus control

Scores based on univariate statistical analysis :

- Fisher score and its variants
- AUC (Area Under ROC Curve)
- T-test score (Long & Baldi)
- Wilcoxon rank-sum score
- etc.
- Additional criteria may control **significance levels** and **False discovery rate** (Benjamini & Hochberg)

Multivariate feature selection

Univariate methods

- each feature (profile position) is considered individually
- May not be sufficient to capture differences in disease/control variability

Multivariate methods

- a biomarker panel (a more than one feature) is needed to define the differences in between case/control
- Subsets of features need to be considered

CS 2001 ML in Bioinformatics

