
Page 1

Continuous Compilation: A New
Approach to Aggressive and

Adaptive Code Transformation

Bruce R. Childers

University of Pittsburgh
Pittsburgh, Pennsylvania, USA

childers@cs.pitt.edu
http://www.cs.pitt.edu/coco

This work is a collaboration of many people!
Sponsored by Next Generation Systems, National Science Foundation.

Code Optimization

• Sophisticated algorithms exist for many
optimizations that do quite well

• We are at the point of diminishing returns in
applying optimizations - small gains are
considered good

• The challenge is to go beyond current
optimization improvements

Continuous Compilation

• A new approach: Apply optimizations both
statically at compile-time and dynamically at run-
time with static planning

• Plan for both static and dynamic optimizations
– Understand interactions of existing optimizations
– Efficacy of both static and dynamic optimizations

• Determine what optimizations to apply, where to
apply them, the order in which to apply them, and
their parameters

Outline

• Introduction: Continuous Compilation
• CoCo Framework
• Profit-driven Optimization

– Loop optimizations
– Scalar optimizations

• CoCo Run-time System
– Software dynamic translation
– Program instrumentation and optimization

• Summary

Continuous Compilation

Static Compilation
(using profiles,

estimation models)

Phase 1

Static Compilation
(using profiles,

estimation models)

Phase 1

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Program Execution
and Dynamic

Optimization (using
monitor and

optimization plans)

Phase 2

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Off-line Adaptation
and Refinement of

Monitor and
Optimization Plans

Phase 3

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

Recompilation and
Regeneration of

Monitor and
Optimization Plans

Phase 4

As time passes, the continuous compiler moves through phases, possibly revisiting earlier ones.

Target applications: Long running programs that have different
phases of execution.

CoCo Framework

Dynamic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

lic
at

io
n

I n
fo

r m
a t

io
n

R
e

po
si

to
ry

Application

Static Compiler Dynamic Compiler

ProfilesProgram
Models

Static Optimizer

Planner

M
a

ch
in

e
an

d
O

p
tim

iz
a t

io
n

In
fo

rm
at

io
n

R
e

po
s i

to
ry

Estimation
Models

Machine
Models

Conductor

Debugger

Checker

Checker

Page 2

CoCo’s Preliminary Prediction
Framework

• Predict the impact of optimizations
• With estimates of benefit and penalty:

– Decision about what optimizations to apply
– Where to apply them
– In what order to apply

Taking into account the code context and machine
resources

Code Predict
Impact

Apply

Don’t
Apply

Beneficial

Not Beneficial

Motivation

• Performance problems of the optimizations
– Optimizations may degrade performance in some

circumstances
– Optimizations interact with one another by enabling and

disabling other optimizations

• Optimizations often applied in an ad hoc fashion
– Simple heuristic: always apply if applicable
– Predetermined order to apply optimizations
– Fixed configurations of optimizations

Challenges

• Performance varies widely, based on
– Code context (e.g., loop trip count)
– Configuration of optimizations (e.g. loop unrolling factor)
– Machine configurations (e.g. cache configuration)
– The order of optimizations

• Many resources impact overall performance
– Cache configuration
– Instruction scheduling rules
– Register numbers and types

Our Approach

• Build and develop analytic models to predict
when to apply an optimization, without actually
applying the optimization

– Need models of particular optimizations
– Need models of the code
– Need models of the resources that are effected

• Based on analytic models, make decisions about
what optimizations to apply

– We don’t need accurate models, just the trend needs to be
accurate enough to do the estimates

Framework for Predicting Optimizations

Source Code

Code

Optimizations

...

Resources

...

FPO: a Framework, consisting of models, for Predicting the
impact of Optimizations

Consider both loop and scalar optimizations (e.g., PRE)

Prediction
...

Plug ‘n Play Models
1. Extract code context
2. Model effect of the

optimization
3. Model effect on the

machine resources

Loop Code Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Express code characteristics that effect resources

For loops and cache: 1. loop header, 2. array references,
3. reference sequence

CIARefs

Refs
lb

step
ub

loop

+×=

= ∫

Page 3

Loop Optimization Model

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Model how optimization transforms code model

For loops and cache: sequence of functions that effect
aspects of the loop’s representation (code model)

()

][:][][:][)(
)),(()(

)()(

)((

jAiAAl
CAlrh

rhRrRg

Rgf inter

↔=
=

∈∀=

∫ ∫ ∫K

E.g., Interchange

Loop Resource Model (Cache)

Source Code

Code

Optimizations

...

Resources

... Prediction
...

How the code model effects machine resources

For loops and cache: with code model, how the array
reference pattern effects both cache misses and hits

1. Group references by
temporal or spatial reuse
and compute conflicts

2. Pick representative ref
from each group

3. Compute misses for
each representative by
reuse and conflicts

Simplified Ghosh model

Loop Optimization Prediction

Source Code

Code

Optimizations

...

Resources

... Prediction
...

Compare transformed & non-transformed code

For loops and cache: Before & after loop optimization and
whether optimization had reduction/increase in cache misses

Prediction of the
benefit or penalty is
the difference
between unoptimized
and optimized

Applications of FPOApplications of FPO

Selectively
apply

optimizations

Predictions

Source Code Code

Optimizations

...

Resources

...

...

Choose
most beneficial
optimizations

Search
best order

or configuration

Combine
optimizations

Experiments

• Benchmarks (MediaBench, DSPStone, and others)

• Machine model
– SimpleScalar microarchitecture simulator
– In-order, single issue, non-blocking cache

» 1KB cache, direct mapped and 32B line size
– Similar to ARM’s 94x, IBM Power PC 405

• Usefulness of FPO for loop optimizations

• Prediction accuracy of FPO for loop optimizations

Ad hoc: Always ApplyingAd hoc: Always Applying

-50%

-25%

0%

25%

50%

alv
 (1

00
)

lgs
i (

98
)

lgs
i (

12
8)

sm
si

(12
4)

tfs
i (4

2)

biq
ua

d_
N(90

)

gd
ev

cd
j(1

00
)

pe
gw

it(
10

0)
ad

i
efl

ux

to
m

ca
t

vp
en

ta

Interchange Tiling Reversal

52%

-111% -120% -108% -85% -103%

Page 4

Selectively Applying Loop OptimizationsSelectively Applying Loop Optimizations

-50%

-25%

0%

25%

50%

alv
 (1

00
)

lgsi
(98

)

lgsi
(12

8)

sm
si

(12
4)

tfs
i (4

2)

biquad
_N

(90
)

gdev
cd

j(1
00

)

peg
wit(1

00
)

ad
i

efl
ux

tomca
t

vp
en

ta

Interchange Tiling Reversal

52%

Choose Most Beneficial Loop OptimizationChoose Most Beneficial Loop Optimization

0%

20%

40%

60%

80%

100%

alv irkernel lgsi gdevcdj smsi srsi biquad_N tfsi tomcat3 lms pegwit

Interchange Tiling Reversal Unrolling Fusion Distribution Not Apply

Loop Opt. Prediction Accuracy

• Accurate trend
– Whether an optimization is beneficial or not

• Correct prediction
– When prediction matches actual execution behavior

• Prediction accuracy
– Single loop nest: varying trip count
– Multiple loop nests: the number of loop nests

Loop Opt. Prediction AccuracyLoop Opt. Prediction Accuracy

92%98%99%Average

81.6%100%100%pegwit

94.7%100%97.4%lms

97.4%100%100%gdevcdj

100%88.2%89.5%biquad_N

93.4%92.1%98.7%tomcat3

100%97.4%100%tfsi

86.8%100%100%srsi

86.8%100%100%smsi

82%100%100%lgsi

93.4%100%98.7%irkernel

97.4%100%100%alv

ReversalTilingInterchangeBenchmark

Prediction accuracy for single loop nest

Similar results for multiple loop nests

FPO: Scalar Optimizations

• Transformations that operate on scalar code
– E.g., constant propogation, dead code elimination, partial

redundancy elimination

• Can have several impacts
– Reduce amount of computation
– Change register pressure (for the better or for the worse!)
– May change memory referencing pattern and cache behavior

• FPO (initially) considers
– Affect on computation
– How register pressure helps or hurts spills and reloads

CODE

1: a 1
2: b 2

3: c a * b 4: c 1

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

1

32

4

CODE

1: a 1
2: b 2

3: c a * b
3: v a * b

3’: c v

4: c 1
4’: v a * b

5: d c + 1
6: f d + c
7: g f + d
8: h a * b

8: h v

1

32

4

Code Model

(before PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (a, b, c)

3: IN (a, b)

OUT (a, b, c)

4: IN (c, a, b)

OUT(…)

Code Model

(after PRE)

1: IN ()

OUT (a, b)

2: IN (a, b)

OUT (c, v)

3: IN (a, b)

OUT (c, v)

4: IN (c, v)

OUT(…)

Impact of PRE

PRE OPT Model

1: <Ins exp USE [Bd, Sd]>

<Ins V DEF [Bd, Sd]>

2: <Del exp USE [Bs, Ss]>

<Ins B USE [Bs, Ss]>

3: <Del Ti DEF [Ba, Sa]>

<Ins V DEF [Ba, Sa]>

<Ins Ti DEF [Ba, Sa +1]>

<Ins V USE [Ba, Sa+1]>

Framework for Predicting Optimizations

(“Prediction Engine”)

Resource Model
(regs)

OPT Model for register
allocation

of load & stores increased or decreased

Page 5

Using a Heuristic to Make
Decisions

1.912.140.380.520.021.140.881.07twolf

4.576.707.357.027.918.197.527.35bzip2

5.284.995.694.883.864.665.254.73vortex

2.231.992.862.551.351.701.501.25parser

2.472.582.622.502.222.312.352.37mcf

0.690.52-0.38-0.401.831.810.751.22vpr

3.275.403.292.904.103.783.753.50gzip

H
16

H
8

H
4

H
0

H
16

H
8

H
4

H
0

Heuristic-driven LCIMHeuristic-driven PRE

Bench.

Approaches for PRE

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

A-PRE Best-heuristic Heuristic-8 P-PRE

Scalar Opt. Prediction Accuracy

87.23Average

91.12433475twolf

78.574456bzip2

81.13431530vortex

87.87210293parser

86.274451mcf

96.04291303vpr

89.584348gzip

%AccuracyCorrectPREsBenchmark

CoCo Framework

Debugger

Checker

Checker

Dynamic
Optimizer and

SDT

Monitor

Continuous
State

Monitor
Plans

Opt.
Plans

Program

A
pp

l ic
at

io
n

In
fo

rm
at

io
n

R
ep

os
ito

ry

Application

Static Compiler Dynamic Compiler

ProfilesProgram
Models

Static Optimizer

Planner

M
ac

hi
ne

an
d

O
pt

im
iz

a t
io

n
In

fo
r m

at
io

n
R

e
po

si
to

r y
Estimation

Models
Machine
Models

Conductor

CoCo Run-Time System

• Based on Software Dynamic
Translation

• Layer of software between application
binary and the OS/CPU.

• Application’s instructions are
examined and modified before being
executed on the CPU.

• Uses include binary translation,
dynamic optimization, & others

Application Binary

CPU

Dynamic Translator
OS

CoCo Run-Time System

• Strata SDT developed at UVA & Pitt

• Provides basic functionality for run-
time optimization

– Memory management
– Caching
– Code analysis
– Overhead reduction
– Program instrumentation

• Includes target Interface
– Handles all interactions between VM,

application binary, and target OS/CPU

Current targets: MIPS/Irix, SPARC/Solaris, x86/Linux, MIPS/Playstation 2

Application Binary

CPU

Dynamic Translator

OS
Target Interface

Memory
Management

Translated
Code Caching

Translated
Code Linking

Overhead
Reduction

Binary to RTL
Translation

Dynamic
Control Flow

Graph

RTL Value
and Dataflow

Analysis

Page 6

Software Dynamic Translation

Translation and Execution
1. Fetch gets next instruction
2. Decode classifies instruction
3. Translate performs any

necessary modification and
rewriting and write translated
instruction into fragment cache

4. Terminate fragment on control
transfer and execute fragment

Strata Software Dynamic Translation

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached? New
Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?

Overhead Reduction in Strata

• Improve run-time performance of translated code,
without applying code optimizations

• Efficient execution in fragment cache
– Linking branches in the translated cache
– Handling indirect branches inline in the translated code

• Program instrumentation
– Reduce amount of instrumentation inserted
– Reduce the cost of an individual piece of instrumentation code

Strata Performance

0
0.5

1
1.5

2
2.5

3
3.5

mcf gc
c

pe
rl

gz
ip

bz
ip vp

r
tw

olf ga
p

pa
rse

r
vo

rte
x

Ave
rag

e

S
lo

w
do

w
n

MIPS SPARC x86 Dynamo/RIO

No optimizations applied – basic run-time system overhead

Program Instrumentation

• CoCo monitors for run-time conditions
– When conditions are found: Apply some optimization plan

• Program monitoring needs instrumentation
– Instrumentation code is inserted into translated binary
– Gathers information, may invoke some action
– Event-driven model

• Challenges
– Dynamic instrumentation: Insert and remove at run-time
– Portable mechanisms (i.e., retargetability)
– Low run-time overhead (including the insertion & removal)

Approach: Instrumentation
Optimization

• Costs associated instrumentation
– Probe count: Number of probes executed
– Probe cost: Intercept program execution

• Transform instrumentation to reduce costs
– Dynamic probe coalescing: Reduce probe count
– Partial context switch: Reduce probe cost
– Payload partial inlining: Reduce probe cost for hot code

• Applied for static or dynamic instrumentation

Example: Cache Simulation

• Cache simulation can be slooooow

• Direct-execution cache simulators
– Popular (& compiled simulation) – Shade, Embra, Fast-Sim
– Instrument every load and store – call data cache simulator
– Instrument every basic block – call instruction cache simulator

• Used INSOP and Strata to build a very fast
direct-execution simulator

Page 7

Comparison of Cache Simulators

8.1x26.7x194.1x169.2x1,325bzip

13.1x34x227.9x228.1x1,192gzip

10.6x21.5x114.4x101.9x2,747vortex

8.8x21.6x123.2x48.4x1,979parser

10.1x20.4x109.8x113x831vpr

11.1x25.2x112.4x111.1x1,364gcc

7.2x15.7xN/A74.9x3,534twolf

2.5x5.5x23.4x10.3x1,813mcf

Strata-
Embra-O6

Strata-
EmbraSim-cacheShadeNative

(Secs.)Benchmarks

Average improvement over Strata-Embra is 2.4x

Related Work

• Effective optimization
– Adaptive optimizing compilers: [Cooper02,04 & Whalley04]
– Iterative compilation: [Knijnenburg03]
– Optimization space exploration: [Triantafyllis03]
– Analytic models: [Wolf91, Sarkar 97, McKinley96, Hu02]

• Software dynamic translation
– Dynamo/RIO, Dynamo, Mojo, Vulcan, Walkabout, DELI

• Cache simulation
– Shade, Embra, Fast-Cache, FastSim

Summary

• A new planning-based approach to compilation
called Continuous Compilation (CoCo)

• Apply whole suite of optimizations with constant
refinement of optimizations and plans for them

• Results
– Highly accurate predictions for simple loop optimizations
– Highly accurate predictions for scalar optimizations
– Low overhead run-time system based on SDT
– INSOP reduces instrumentation cost (cache simulation)

Collaborators

Many students have participated, including:
• FPO: Min Zhao (Pitt)
• Program instrumentation: Naveen Kumar (Pitt)
• Strata: Kevin Scott (UVA/Google) and Naveen Kumar
• Overhead reduction: Kevin Scott, Naveen Kumar,

Jason Mars (Pitt)

Other Faculty: Mary Lou Soffa, Jack Davidson (UVA)

• Sponsored by the National Science Foundation, Next
Generation Systems, 2002-2003 and 2003-2006

Current Areas of Focus

• Continuous compilation
• Software dynamic translation

– Low overhead dynamic translation
– New applications to architecture simulation, security

• Debugging of dynamically translated code
– Dynamically optimized code
– Security checking
– Dynamically compiled simulation

• Soft error detection & recovery based on SDT
• Power-aware memory systems

Current Projects
• Debugging dyn. translated/optimized code – N. Kumar
• On-demand structural software testing with dynamic

instrumentation – J. Misurda and J. Clause
• Static/dynamic optimization planning – S. Zhou
• Optimization checking – Y. Huang

• Compiler-driven power management – N. Aboughazaleh
• Memory systems for cognitive processing
• Reuse through Speculation on Traces – M. Pilla (from

UFRGS)

Page 8

Selected Past Projects
• Instruction code compression/decompression
• On-demand code downloading for Smartcards
• Program profiling primitives and profiling language
• Software based value reuse on traces

• Power on/Shut down of superscalar functional units
• Memory bus reordering for power reduction
• Processor-driven DVS (based on IPC/peak demands)
• Data width-sensitive VLIWs & scheduling
• Application-specific processors (automatic design and

target architectures)

CS2002 Projects?
• Debugging for code security with SDT
• Dynamically compiled & sampled architecture

simulation
• Profit-driven optimization for other constraints

(e.g., power, code size)
• Self-checking programs (for soft errors; e.g.,

memory bit flips)
• Domain specific languages for structural testing

and automatic planning
• Reconfigurable / custom memory systems
• And many others… or your ideas??

Let’s Talk!

• 6409 Sennott Square
• Office hours: MW 1-3 PM
• Or by appointment

• Send e-mail…. childers@cs.pitt.edu

• See selected papers online….
http://www.cs.pitt.edu/~childers

