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Abstract 

With the immense popularity of the Web, the world 
is witnessing an unprecedented demand for data 
services. At the same time, theInternet is evolving 
towards an information super-highway that incor- 
porates a wide mixture of existing and emerging 
communication technologies, including wireless, 
mobile, and hybrid networking. Taking advantage 
of these new technologies, we are proposing a hy- 
brid scheme which effectively combines broadcast 
for massive data dissemination and unicast for in- 
dividual data delivery. In this paper;we describe a 
technique that uses the broadcast medium for stor- 
age of frequently requested data, and an algorithm 
that continuously adapts the broadcast content to 
match the hot-spot of the database. We show that 
the hot-spot can be accurately obtained by mon- 
itoring the “broadcast misses” observed through 
direct requests. This is a departure from other 
broadcast-based systems which rely on efficient 
scheduling based on precompiled ‘user profiles. 
We also show that the proposed scheme performs 
effectively even under very dynamic and rapidly 
changing workloads. Extensive simulation results 
demonstrate both the scalability and versatility of 
the technique. 

1 Introduction 

The world is witnessing an unprecedented demand for data 
services. The immense popularity of the Web is generat- 
ing exponential demand workloads that cannot be satisfied 
with existing Internet capacity and traditional data services 
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in which scalability grows at best linearly with network 
bandwidth and server capacity. Such workloads have al- 
ready been observed in the course of special events such as 
the 1996 Olympics, the last elections in the US, etc. when 
several million requests were made during peak periods. 

Traditional unicast (point-to-point) connection-oriented 
data services are uneconomical because even if the infras- 
tructure were developed to meet the demand in both net- 
work bandwidth and server capacity, most of it would be 
underutilized and wasted during non-peak periods. On the 
other hand, the Internet is evolving towards an information 
super-highway that incorporates a wide mixture of com- 
munication technologies, including wireless, mobile, and 
hybrid networking[KB96, BG96, Kha97]. In this environ- 
ment, new types of information services are surfacing and 
practical solutions to the anticipated explosion of user de- 
mands are being proposed[FZ96]. Among these, broadcast- 
based services have the potential of meeting such work- 
loads, as they can efficiently disseminate information in a 
connection-less mode to any number of receivers, with no 
significant performance degradation in terms of access la- 
tency. But a major concern for the success of such systems 
is broadcasting the right set of data, i.e. data for which there 
is indeed vigorous demand. 

In [SRB96], we introduced a hybrid system that effec- 
tively combines broadcast for massive data dissemination 
(broadcast data push) and unicast for upon-request data de- 
livery (unicast data pull). This system is built around the 
notion of air-caching, i.e. the use of the available broad- 
cast capacity for temporary storage of frequently requested 
data. The key issue is the identification of the database hot- 
spots to be air-cached, so that only a small load of “broad- 
cast misses” is left to be serviced in the usual connection- 
oriented way. There are, however, at least two major ob- 
stacles: First, data needs can be neither characterized nor 
predicted a-priori because of the dynamic nature of the 
demand. For example, emergency or weather related situ- 
ations may cause abrupt shifts in demand. Therefore, tech- 
niques based on precompiled broadcast schedules are not 
applicable in this case. Second, users receiving information 
from a broadcast channel are passive, in the sense that they 
do not communicate with the server to acknowledge the 
usefulness of the broadcast. Therefore, the server lacks a 
lot of invaluable information about actual data needs. 
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In this paper, we propose a technique that continu- 
ously adjusts the broadcast content to match the hot-spot 
of the database. We show that the hot-spot can be accu- 
rately obtained by monitoring the “broadcast misses” ob- 
served through direct requests. This is a-departure from all 
other schemes which rely on complete-but in most cases 
unavailable-knowledge about both “hits” and “misses”. 
We develop an adaptive algorithm which relies on marginal 
gains and probing to identify the more intensively requested 
data. We show that the overall performance of this hybrid 
system can surpass the capacity of a unicast-only server 
by at least two orders of magnitude, under the assumption 
that the server’s capacity is sufficient for servicing the cold 
set of data. If that holds, the performance of the hybrid 
system proposed herein is independent of the total volume 
of the workload and, thus, the system exhibits significant 
scalability, even for rapidly changing access patterns. 

2 Hybrid Data Delivery 

In this section, we develop a simplified analytical model for 
hybrid data delivery which will provide some intuition be- 
hind our work and illustrate the involved trade-offs. Based 
on this model, we discuss how broadcast and unicast can 
work synergistically to yield high data service rates. 

2.1 The Hybrid Model 

In a hybrid scheme, we can exploit the characteristics of 
each of the data delivery modes and integrate them in a way 
that better matches the clients’ demands. The objective is to 
deliver the needed data with minimum delay to very large 
numbers of clients. Striving for that goal, we should be 
looking for solutions that range between: 
Pure broadcast (push)’ : The server repetitively (periodi- 

cally) broadcasts all the data items, while clients are 
passive listeners who make no requests. The repeti- 
tion allows the broadcast medium to be perceived as a 
special memory space. Its major advantage is that it 
can be accessed concurrently by any number of clients 
without any performance degradation. This makes 
broadcasting an attractivi solution for large scale data 
dissemination. However, its limitation is that it can 
be accessed only sequentially, as clients need to wait 
for the data of interest to appear on the channel. A 
direct consequence is that access latency depends on 
the volume of the data being broadcast, which has to 
be fairly small. 

Pure unicast (pull): This is a standard client-server archi- 
tecture where all requests are explicitly made to the 
server. Such a scheme cannot scale beyond the capac- 
ity of the server and the network. The average data 
access time depends on the aggregate workload as well 
as the network load, but not on the size of the database. 

‘Throughout this paper the terms data push and broadcast are used 
interchangeably; so are the terms data pull and unicast 
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Figure 1: Hybrid Delivery Trade-off 

Consider a database containing N data items of equal 
size S. Assume that the demand for each item i forms a 
Poisson process of rate Xi with the items numbered such 
thatX1 2 X2 2 ... 2 AN. A server, modeled as an M/M/l 
system, services requests for these items with mean service 
time l/p. In addition, this server can broadcast data over 
a channel at a rate B. Also assume that, for some reason, 
the server decides to broadcast the n first items and offer 
the rest on-demand. If we define Ak = CF=, Xi, then 
the expected response time for requests serviced by the 
server is TpUll = p-(AA-h ” ’ ) while for those satisfied by 

the broadcast it is Tpvsh = g, half the time required to 
broadcast all n items. The expected response time T of the 
hybrid system is the weighted average of Tpull and Tpu8h. 

Figure 1 plots a representative example of T, Tpull and 
T push as a function of n, i.e. the number of broadcast items. 
We have assumed that the total workload is greater than p, 
which is a safe assumption for large scale systems with huge 
client populations. Henceforth, we refer to ,U as the system’s 
pull capacity. The first thing to note in this figure is that 
the performance of the pull service Tpull is exponentially 
affected by the imposed load. It is evident that with too 
little broadcasting, the volume of requests at the server may 
increase beyond its capacity, making service practically 
impossible (left side of the graph). Stated more formally, 
the response time for pulled data-and consequently the 
overall response time-grows arbitrarily large, for n < M, 
where M is such that AN - AM = p. On the other hand, 
the response time for pushed data is a straight line, growing 
proportionally to the volume of the broadcast data. The 
slope of that line is determined by the size of the data S and 
the available bandwidth B. Hence, too much broadcasting 
is not desirable either. Obviously, for best performance, we 
must look for solutions in the area around G, where we can 
maintain a proper balance between data push and pull. 

2.2 Practical Considerations about Workloads 

The discussion of the previous section suggests that it is 
possible to balance data delivery modes in order to obtain 
optimal response time. However, this optimal solution de- 
pends on the shape and size of the imposed workload. In 
what follows, we explore hybrid delivery from a practical 
perspective and give a qualitative answer to how a combi- 
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Figure 2: Skewed Data Access Pattern 

nation of broadcasting and unicasting can be advantageous. 
Intuitively, data broadcasting is helpful when its con- 

tent is useful to multiple receivers. The benefit is twofold: 
first, with each broadcast message the server saves several 
unicast messages that otherwise would have to be sent indi- 
vidually, and second, the satisfied receivers avoid sending 
requests that might end up clogging the server. On the other 
hand, broadcast data that are useful to hardly any receivers 
do not yield any benefit,’ but instead harm overall perfor- 
mance by occupying valuable bandwidth. This implies that 
broadcasting is effective when there is significant common- 
ality of reference among the client population. Ideally, we 
would like to detect and exploit that commonality. 

Consider, for example, a data set of N items and assume 
that they get requested according to the skewed access pat- 
tern of Figure 2. For clarity, we assume that items are sorted 
according to their respective request rates. From the dis- 
cussion so far, it becomes clear that we are looking for the 
optimal point G to draw the line between data that should 
be pushed and data that are left to be pulled. The area to the 
left of G (the head of the distribution)represents the volume 
of requests satisfied by the broadcast. The shaded area to 
the right of G (the tail of the distribution) represents the 
volume of the explicit requests directed to the server. Ac- 
cording to the model presented in the previous section, the 
response time depends on the area of the tail and the width 
of the head (i.e. the number of broadcast items). The height 
of the head reflects the savings of broadcasting. Generally, 
the selection of G should satisfy two constraints: 

(1) The tail should be maintained below the pull capacity. 
(2) The head should be wide enough to accommodate the 

hot-spot but should not include rarely requested data. 

While the first constraint is intuitive, the second deserves 
some clarification, as it is critical to the practicality of a 
hybrid solution. Consider a case where the tail is a very 
long area of very small, but not zero, height. That repre- 
sents a large number of items that each gets requested very 
infrequently. If this area is larger than the pull capacity, we 
need to move the point G even more to the right. But since 
each item contributes very little to the total area, the optimal 
G would be found deep into this tail. This means that the 
quality of the broadcast content would substantially deteri- 

’ Assuming there is another way to satisfy those very few receivers 

orate by including lots of rarely requested items, yielding 
unacceptably high response time, which nonetheless would 
be optimal according to our model. Consequently, under 
such workloads, slightly increased pull capacity is a more 
favorable solution than inordinate broadcasting. 

Bearing this in mind, we consider cases where the opti- 
mal solution does not require broadcasting rarely requested 
data. It is assumed that the pull capacity is at least such that 
it can handle the aggregate load imposed by requests for 
such data. Under this assumption, we propose an adaptive 
hybrid scheme that, in a near optimal way, exploits broad- 
casting to take the load of hot data off the server which is 
left with a tolerable load imposed by infrequently requested 
data. 

3 Adaptive Hybrid Delivery 

In this section we elaborate on the proposed adaptive hy- 
brid delivery scheme. Our approach is mainly based on the 
notion of data caching. Conceptually, we treat the available 
broadcast capacity as a global cache memory between the 
server and the clients. Much like typical cache memories, 
this air-cache is used to increase throughput in terms of 
requests serviced per time unit, and should be adaptive to 
changing workloads. The challenge in making it adaptive 
lies in the fact that the server cannot have any information 
about “air-cache hits” simply because they are not acknowl- 
edged by the clients. Therefore, traditional cache manage- 
ment techniques based on cache hits, such as LRU, MRU, 
etc., are not applicable. Instead, the algorithm presented 
here relies on “air-cache misses”, indicated by explicit re- 
quests for data not broadcast, that provide the server with 
tangible statistics on the actual demand. This unveils an 
interesting perplexity of the system: the more misses the 
better server statistics to adapt on; but, on the other hand, 
the more hits on the broadcast, the more satisfied the clients. 

3.1 Vapor, Liquid and Frigid Data 

In our work, for each item in the database we define a tem- 
perature that corresponds to its request rate Xi. In addition, 
each item can be in one of three possible states (for a more 
intuitive presentation, we borrow terminology from their 
analogy to the physical states of water): 
Vapor: Items deemed as heavily requested which are there- 

fore broadcast, i.e. put in the air-cache. 
Liquid: Items currently not broadcast for which the server 

has recently received a moderate or small number of 
requests, but not enough to justify broadcasting. 

Frigid: Items that have not been requested for a while and 
their temperature Xi has practically dropped to 0. 

In the proposed adaptive scheme, the server dynamically 
determines the state of the database items, relying on air- 
cache misses. These can be considered as the “sparks” that 
regulate the temperature and state of the data. Specifically: 
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l Vapor data are retrieved from the air-cache, and the 
server does not get any feedback about their actual 
temperature. As they are not heated by requests, they 
gradually cool down and eventually turn into liquid. 
The duration of the cooling process depends on the 
temperature that initially turned them into vapor. 

l Liquid data items that continue being requested either 
turn into vapor or remain liquid, depending on the 
intensity of the requests. If they stop being requested 
they eventually freeze. 

l Frigid data items that start being requested turn into 
liquid or even vapor, again depending on the intensity 
of the requests. Obviously, as long as they get no 
requests they remain frigid. 

The hardest part of this process is distinguishing vapor 
from liquid data, and this is the focus of this paper. The dis- 
tinction between liquid and frigid data items is the same to 
that achieved by a buffer manager of a database system us- 
ing a frequency-based replacement policy[RD90,OOW93]. 
Likewise, the server should maintain liquid items in main 
memory anticipating new requests in the near future, and 
can retrieve frigid items from secondary memory only when 
necessary. In practice, the distinction of frigid data plays 
an important role in terms of overhead, specially in the case 
where frigid data make up the largest part of the database. 
With a default 0 temperature, the server is off-loaded from 
tracking their demand statistics, and can also safely ignore 
them when looking for candidate vapor items. 

3.2 Repetitive Data Broadcasting 

In order to create the effect of caching on the air, we employ 
a repetitive broadcast scheme. Contrary to typical periodic 
broadcast schemes that assume a fixed schedule, the size and 
content of our broadcast is continuously updated to better 
match the workload. The heart of our approach is a queue 
V which stores all vapor data. The server picks the next 
item to broadcast from the head of V. After an item gets 
broadcast, it is removed from the head and gets appended 
back to tail of V. At the same time, its temperature is 
multiplied by a predetermined CoolingFactor E (0, 1) to 
reflect the cooling process of vapor data. 

The contents of V are modified once every cycle, the end 
of which is identified by a vapor item specially assigned 
as a placeholder. Once this placeholder is broadcast, the 
server re-evaluates the state of data and-updates the queue 
accordingly. In this adaptation process, described in detail 
in the next section, it pinpoints vapor items that should be 
demoted to liquid, and liquiditems that need to be promoted 
to vapor. Vapor items selected for demotion are marked, so 
that after their next broadcast they will be removed from 
the queue. New vapor items are placed on the tail of queue. 
Finally, the (new) item on the tail of V is assigned as the 
next placeholder. The result is arepetitive broadcast scheme 
with evolving size and content. 

An integral part of the hybrid delivery scheme is the 
indexing of the air-cache. Since clients are expected to se- 
lect between the two data delivery paths, the server needs 
to make them aware of items forthcoming in the broadcast 
channel. Here, we have adopted a simple technique that 
uses the signature of V (i.e. the list of data identifiers in the 
queue) as an index that is broadcast interleaved with the 
data. The clients examine the index and decide whether to 
wait for the required item to arrive or to make an explicit 
request for it. The broadcast frequency of the index can be 
adjusted to trade overhead for the maximum time clients 
are willing to wait before making the decision. Note that, 
depending on the size and the number of vapor items, it is 
possible that this simple indexing scheme will yield con- 
siderable overhead. For such cases, we plan to investigate 
more elaborate indexing schemes, such as bit-vectors or the 
schemes proposed in [IVB94a] and [IVB94b]. 

3.3 Adaptation Based on Marginal Gains 

In this section, we present the algorithm that adapts the 
contents of the broadcast. As we already mentioned, in the 
adaptation process, the server needs to make two kinds of 
decisions: (a) which of the vapor data have cooled down 
enough to be demoted to liquid, and (b) which of the liquid 
data have become hot enough to be promoted to vapor. A 
straightforward approach of establishing absolute temper- 
ature thresholds cannot be applied because the state of an 
item depends also on the aggregate workload, i.e. the rel- 
ative temperature of the other items. To account for that, 
we have developed an algorithm that makes these decisions 
based on the expected marginal gain of each possible action. 

Let us first present how the expected marginal gain is 
computed when considering an item i for promotion to va- 
por state or demotion to liquid. Note that in both cases it 
is computed similarly except for the sign of the involved 
quantities. Therefore, to avoid duplication in the presen- 
tation, we use the variable A which takes the value -1 if 
the item i is vapor and considered for demotion to liquid, 
and $1 if it is liquid and considered for promotion to va- 
por. The computations are based on the model described in 
Section 2.1. The only difference is that now we also take 
into account the overhead of broadcasting the index. The 
additional variables used here are the aggregate request rate 
for liquid data AL, the aggregate request rate for vapor data 
AV , the number of vapor items NV, and the size of each 
index entry 1. The expected overall marginal gain dT is 
given by the weighted average of the marginal gains dTpush 
and dT,,,, where, if we define dAv = A Xi, we have: 

d&sh = A 
S+(2Nv+A)I 

2B 
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Figure 3: Marginal gains 

Figure 3 depicts these computations graphically. Ideally, 
the system should try to reach and operate at the minimum 
point of the curve T. However, it turns out that in practice 
this is not the best thing to do. This is explained by the 
fact that to the left of this minimum point the response time 
grows very fast. As a result, under a dynamic workload it is 
very probable that even a small change can have a very bad 
effect on the system. Therefore, operating at or too close 
to the minimum can make the system very unstable. This 
was indeed verified by our experiments[SRB97]. Instead, 
we have to force the system to operate in a suboptimal area 
to the right of the minimum, safely avoiding instability. 
We achieve this by establishing some small (but not zero) 
threshold 00 for the angle 0 = tan-’ -&. 

The actual algorithm that updates the contents of the 
vapor queue V consists of three simple steps: First, it de- 
motes to liquid all vapor data with temperature lower than 
the hottest liquid item. Then, using the respective marginal 
gains, it continues demoting vapor items in increasing order 
of temperatures while 0 > 00. Last, it takes the opposite 
direction, and as long as 0 < ~90, it promotes liquid data to 
vapor in decreasing order of temperature. Note that if at 
least one vapor item is demoted in the second step, then no 
liquid item will be promoted in the third step. Also, it is 
possible that vapor items that get demoted in the first step 
will be re-promoted in the third. If data items are sorted by 
their temperatures,* the complexity of this algorithm is in 
the order of the number of items that change state. 

Figure 4 illustrates an example of how the algorithm 
works. We assume that initially items A, B, C, D, E, F, and 
G are vapor, items H and I are liquid, and that XA 5 XB 5 
X C- D- Es F- < X < X < X < XI < XG < XH. In this case, 

Demote 
1 

A” 

Figure 4: Example execution of the adaptive algorithm 

Figure 5: Demotion (a) without, and (b) with probing 

the algorithm firsts demotes A, B, C, D, E, F, and G since 
their temperature is lower than that of the liquid H. Then, it 
detects that there is no further gain by demoting more items 
so it skips the second step. At the third step it promotes 
three items, H, G, and I (G was demoted in the first step). 

3.4 Temperature Probing 

A potential weakness in what has been described so far is 
the artificial cooling of vapor data. It was introduced for the 
sole purpose of giving the server a chance to re-evaluate the 
temperature of vapor data regularly, Thus, it is not expected 
to reflect the actual evolution of data demand, and may very 
well result in a situation where a very hot item is demoted 
to liquid. Should that happen, the server will be swamped 
with hundreds or thousands of requests for that item. Even 
though the adaptive algorithm will eventually correct this 
by re-promoting the item, the reaction time lag may be big 
enough to cause serious performance degradation. 

This is better explained in Figure 5a where we present 
the time line of events after a decision to demote a hot 
vapor item at time to. This decision is reflected in the next 
broadcast of the index which reaches the clients at t I. From 
that point on, all the requests for that item are directed to 
the server. If the item is still hot, the server decides re- 
promote it to vapor at t3, and includes it at the next index 
broadcast, received by the clients at t4. But, considering 
data transmission and server inertia delays (i.e. the time to 
re-promote the item), the interval between t 1 and t4 could be 
substantial. The shaded areain the figurerepresents the total 
request load that this wrong decision may generate. The 
cumulative penalty of consecutive improper demotions can 
be heavy enough to make the system practically unusable. 

This section introduces temperature probing as a way of 
preventing any disastrous effects by premature demotions 
of vapor data. The algorithm that we propose remedies 
potential errors by a “double clutch” approach, which is 
illustrated in Figure Sb. Soon after the decision to convert 
an item from vapor to liquid at to, and before it is actually 
heated up by misses, the item is re-promoted at time t2. 
This creates a controllably small time window (from tl 

21n [SRB97] we discuss how to maintain the order with low overhead 
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Figure 6: HotColdUniform distribution 

to ts) that limits the expected number of client requests 
for the demoted item, but still can provide the server with 
concrete information about the actual demand. In effect, 
through a small number of misses, we give the server the 
opportunity to probe for the actual temperature of the data, 
before committing to its decision. After the re-promotion 
of the item at t2, the server waits for requests generated 
during the period [ti , ts] in order to re-evaluate the item’s 
actual temperature. Due to network inertia, we delay this re- 
evaluation at least until ts. Finally, depending on the result 
of the probing, the item is either demoted or reinstated to 
the broadcast queue with corrected temperature at t6. 

A critical factor for this double-clutch approach is the 
probing interval [to, t2]. If it is too short, hardly any requests 
will be generated to help the server in the re-evaluation. If 
it is too long, it essentially defeats its purpose. There- 
fore, it should be selected very carefully, and should prefer- 
ably be dynamically adjusted to the intensity of the work- 
load. For these reasons, we found that a very good se- 
lection can be based on the average request rate of vapor 
data. More specifically, we set the probing time to be 
ProbingFactor x 2, where 2 is inverse of the average 
temperature of vapor data. Essentially, with this demand- 
adjusted probing window, the ProbingFactor determines 
the expected number misses generated per probe, and allows 
the system to explicitly control the total probing overhead. 

4 Experiments and Results 

4.1 Simulation Model 

In order to establish the potential of hybrid data delivery and 
investigate the involved trade-offs, we have built a simula- 
tion model of the proposed system. For our experiments, 
we assumed that the provided information is a collection of 
self-identifying data items of equal size (e.g. disk pages). 
Clients generate requests for data whichare satisfied either 
by the broadcast or the server upon explicit request. Under 
this assumption, we have modeled all the client popula- 
tion as a single module that generates the total workload, a 
stream of independent requests for data items. The exact 
number of clients is not specified but instead it is implicitly 
suggested by the aggregate request rate. For the data access 
pattern we used two different distributions: HotColdlJni- 
form and Gaussian (Figures 6 and 7). The first one is only 
used as an ideal case where there is a clearly defined hot- 
spot in the database. The second is more realistic, but at the 

1 +JJ&& , 
0 C N 

Figure 7: Gaussian distribution 

same time it allows explicit customization through the same 
four parameters: the aggregate request rate RR, the aggre- 
gate request rate for cold data A, the width of the hot-spot in 
terms of data items HS, and the center of the hot-spot C. In 
order to create the effect of dynamic workloads, the value 
of these parameters can vary in the course of an experiment. 
For example, by changing the value of C we can simulate 
workloads with moving hot-spots. 

For the server we have used a simple data server model, 
enhanced with a transmitter capable of broadcasting, and the 
functionality required to implement our adaptive algorithm. 
Although it is modeled in detail through several parameters 
(e.g. cache size, I/O characteristics, etc.), the presentation 
and interpretation of our results is based only on one pa- 
rameter, the system’s pull capacity p, which corresponds 
to the maximum rate at which requests can be serviced. 
Depending on the experiment setup, this is determined by 
(a combination of) the processing power of the server, the 
available bandwidth, and the size of the data. For the net- 
work, since we want to capture hybrid environments, we 
need to specify the characteristics of three communication 
paths: (1) the broadcast channel, (2) the downlink from the 
server to the clients, and (3) the uplinkfrom the clients to the 
server. For simplicity, we assume that all clients use similar 
but independent paths for establishing point-to-point con- 
nections with the server. The downlink on the other hand 
is a shared resource that is used for all server replies. The 
broadcast channel is considered a separate channel with a 
fixed specially allocated bandwidth. We must also note that 
in our study so far we have ignored communication errors. 

4.2 Static Workloads 

For the first set of experiments we used static workloads, 
even though they cannot demonstrate the system’s adap- 
tiveness. The reason is that they can provide a solid base 
for comparison, since for those we can easily determine the 
optimal behavior of a hybrid delivery system. Actually, the 
graphs in this section include two baselines for comparison. 
The first, marked “Theory”, represents the theoretically op- 
timal, based on the the model of Section 2.1. For the second, 
marked “PerfectServer”, we used a stripped version of our 
server which does not adapt, but instead, broadcasts period- 
ically the optimal set of data, obtained through exhaustive 
search. For static workloads, the line “PerfectServer” is the 
ultimate performance goal of our system. 
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Figure 8: HotColdUniform 
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Figure 9: Gauss, Fixed hot-spot 

For the experiments presented in this section we have as- 
sumed that both broadcast and downlink rates are 12Mbps, 
while the uplink is 28.8Kbps. These could correspond to 
a hybrid architecture like the DirecPC[Hug]. The database 
consists of 10000 items, each 5OKB in size. For this data 
size, the broadcast and the downlink capacities are roughly 
30 items per second. Assuming enough computing power 
at the server, this is also the system’s pull capacity 1-1. For 
the workload, we vary its volume from light (RR < p) 
to very heavy (RR = 100 x p) to show the behavior of 
the system in different scales. We intend to demonstrate 
that, under the assumptions discussed in Section 2.2, our 
approach performs close to the optimal, and exhibits very 
high scalability. A significant performance property of this 
system is that response time depends only on the size of the 
hot-spot, and not on the intensity of the workload. 

First, we present the results we obtained under the ideal 
HotColdUniform workload distribution. In Figure 8, we 
show the average response time as a function of the request 
rate RR. The size of the hot-spot HS remained constant (100 
items) for all values of RR in order to highlight the above 
mentioned property. For contrast, we include the perfor- 
mance of the pure pull system which, as expected, cannot 
accommodate workloads higher than its capacity (X 30 re- 
quests/set). On the other hand, it is evident that the hybrid 
delivery approach can scale to workloads at least 100 times 
heavier (note that the horizontal axis is in logarithmic scale). 
Even for large values of RR, response time remains prac- 
tically constant. Moreover, under this ideal separation of 
hot and cold data, our approach performs optimally, match- 
ing both the theoretically minimum response time and that 
of the perfect server. As RR grows, most of the requests 
become air-cache hits, and therefore, the average response 
time is dominated by the performance of the hits. Obvi- 
ously, this depends only on the size of hot-spot size, and is 
roughly equal to half the time it takes to broadcast it. The 
load incurred by air-cache misses is maintained below the 
pull capacity, consistently yielding sub-second responses. 

Next, in order to test our system under more realistic 
workloads, where the boundaries of the hot-spot are not 
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Figure 10: Gauss, Expanding hot-spot 

clearly defined, we performed a set of experiments using 
the Gaussian distribution. All the workload and system 
parameters are the same as in the previous case. How- 
ever, now we present results obtained under both fixed and 
expanding hot-spot sizes. For increasing values of RR, a 
fixed hot-spot was achieved by increasing accordingly the 
skewness of the distribution (i.e. decreasing its standard 
deviation); for the expanding hot-spot we used a constant 
standard deviation. Figure 9 shows the performance under 
a fixed hot-spot, where again we see that even for large 
workloads the response time remains very small. However, 
this time there is a small, yet distinguishable, discrepancy 
between our system and the optimal. The reason is that our 
system selected to broadcast, on the average, a few more 
items over what both the theoretical model and the “Per- 
fectserver” suggest as optimal. This is an artifact of the 
threshold 60 (Sec. 3.3) which urges the adaptive algorithm 
to slightly favor broadcasting. Contrary to the previous 
case, the algorithm now detects, outside the optimal va- 
por set, items hot enough to be considered for promotion. 
Figure 10 presents the results for the same experiment, but 
with expanding hot-spot. From the two baselines, we can 
see that the optimal vapor set-and consequently the opti- 
mal response time-is indeed growing with RR. But, even 
in this case our system scales very well, in the sense that it 
manages to follow the optimal performance very closely. 

4.3 Thing Parameters 

In Section 3, we introduced three important tuning parame- 
ters, namely 00, CoolingFactor, and ProbingFactor. While 
the first is used just to keep the system at a safe distance 
away from instability, the other two are essentially the knobs 
that control its adaptiveness and overhead. Here, we con- 
centrate on the effects of the latter two parameters. For 00, 
we have established from previous experiments that a good 
a selection is such that -& = tan& 2 0.1 [SRB97]. 

Temperature probing was introduced to prevent the detri- 
mental consequences of early demotions of vapor items, but 
the probing window needs to carefully selected; if it is either 
too small or too big, it is essentially the same as no probing 
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Figure 11: Effects of probing 

at all. In Section 3.4, we defined the probing window to be 
dynamically adjusted by the ProbingFactor and the average 
request rate for vapor items. This way, we directly control 
the number of expected misses per probe, i.e. for a Probing- 
Facto& we get an average of 4 requests per probe. The 
CoolingFactor(Sec. 3.1) is also very related to probing, and 
must be carefully selected as well. A small value causes the 
temperature of vapor data to drop quickly, yielding frequent 
probing and high overhead in terms of probed misses. But, 
on the positive side, a small value also allows the system to 
adapt faster to changes in the demand. Large values have 
the opposite effect; they cause less probing but hinder the 
adaptiveness of the system. 

Figure 11 shows how the ProbingFactor affects the sys- 
tem’s performance, for two different values of the Cooling- 
Factor. For this experiment, and the rest of the experiments 
presented hereafter, we used the Gaussian access pattern 
with RR=500 requests/set and ZfS=lOO items. The first 
thing we note is that, without probing (ProbingFactod), 
the system cannot recover from the incorrect demotions, 
and the response time grows arbitrarily large. But even a 
very small number of probed misses (1 2) are sufficient to 
correct the temperatures of vapor data, thus allowing the 
system to operate close to the optimal. As the Probing- 
Factor increases further, so does the volume of the probed 
misses. The rate at which this happens depends on the 
frequency of the probing (i.e. the CoolingFactor) and the 
number of items being probed (i.e. the number of vapor 
items). Beyond some point, the overhead of probed misses 
becomes too big for the server to handle, leading again to 
very slow responses. In other words, with a very large Prob- 
ingFactor, probing causes the problem that it was supposed 
to solve in the first place. Naturally, this happens earlier 
when probing is more frequent (CoolingFactot=O.8). 

4.4 Dynamic Workloads 

For the last set of experiments, we used dynamic workloads 
in order to evaluate the adaptiveness of our system in cases 
when the focus of the clients’ demand changes. Such a 
change was modeled as an elimination of a hot-spot and a 
generation of a new one in another (randomly selected) part 

of the database. This process was not instant, but instead 
it was taking a transient period of TP minutes to complete. 
Every new hot-spot persisted for Duration minutes. For 
easier interpretation of the results, all the hot-spots were 
similar, and the total workload remained constant. 

In Figure 12 we present the obtained results as a function 
of Duration. The workload in these graphs is more dynamic 
on the left side, since with smaller Duration changes oc- 
cur more often. We used two different values of TP for 
comparing fast (white marks, TP=2min) and more gradual 
(black marks, TP=Smin) changes. Also, we give results 
for two values of the CoolingFactor (CF=o.9 and CF=O.8) 
which determines the adaptation speed of the system. For 
better comprehension of the results, we graph the total av- 
erage response time (Fig. 12a), the average response time 
for pulled data (Fig. 12b), and the average number of va- 
por items (Fig. 12~). For all these experiments, we used 
ProbingFactor= and tan&O. 1. 

The most significant observation is that the system adapts 
very well to changing access patterns (Fig. 12a). Even on 
the left side where changes occur very frequently, the re- 
sponse time remains small. It most cases, performance 
lies within 1 set of that achieved under the static work- 
load (Fig. 9). This means that the server is very effective 
in detecting shifts in the clients demand, and thus can react 
promptly. As expected, the system adapts and performs bet- 
ter with a smaller CoolingFactor. But, an unexpected result 
shown in Figure 12a is that the system appears to perform 
better under more abrupt changes (TP=2min). However, 
this will be justified in the following where we discuss how 
the system is affected by dynamic workloads. 

Changing hot-spots have a performance impact on both 
the pull (Fig. 12b) and the push (Fig. 12~) part of the system. 
First, an item that suddenly becomes hot can generate a large 
number of requests before the server is able to react and 
append it to the air-cache. The cumulative effect of these 
requests may cause significant build-up in the server’s input 
queue, and therefore increase the average response time 
for pulled data. This build-up is worse when the changes 
are faster and more frequent. Indeed, in Figure 12b we 
see that the average pull response time increases when the 
changes occur more often (left side) and when new hot-spots 
are heating up faster (white marks). Second, in transient 
periods the server actually perceives two hot-spots, the old 
and the new. Thus, in order to meet the demand during 
those periods, it has to expand the vapor set to include them 
both. This explains why in Figure 12c the average number 
of vapor items increases as the Duration decreases. With 
decreasing Duration, the transient periods make up more 
and more of the total time. As a result, the server appears 
to be broadcasting, on the average, more data. Note that 
for Duration=TP=Smin the workload is continuously in 
transient state and the server almost always detects two 
hot-spots. As a result, the size of vapor set is close to 
double that of the static case. We also observe that this 
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phenomenon is worse with longer transient periods (black 
marks) as the server spends more time broadcasting both 
hot-spots. Since, in these experiments, the average response 
time is dominated (%90%) by broadcast accesses, this also 
explains why the system appears to perform better under 
more abrupt changes (TP=2min). 

Finally, here we can also notice the effects of the Cool- 
ingFactor to the adaptiveness of the system. On one hand, 
the smaller value (CF=O.8) harms the pull response time 
since it causes more frequent probing and, thus, more 
misses (Fig. 12b). But, on the other hand, it limits un- 
necessary broadcasting and reduces the “double hot-spot” 
phenomenon since it allows the server to detect faster loss 
of interest for vapor data (Fig. 12~). Consequently, the 
CoolingFactor should be selected as small as it causes tol- 
erable probing overhead. Note that the probing overhead 
can be estimated (and controlled) by the CoolingFactor, the 
ProbingFactor, and the number of vapor items. Also, it is 
even possible to employ a self-tuning strategy for the sys- 
tem. In other words, the system can monitor the workload 
behavior and the results of its previous actions to learn how 
it should be operating more efficiently. As an example, if 
after a series of probings the outcome is always the same, 
it may be good idea to increase the CoolingFactorand sam- 
ple less frequently. Overall, one of the strongest features 
of this approach is that, with a proper combination of two 
parameters, we can explicitly control fairly accurately the 
adaptiveness of the system, the effectiveness of the probing, 
and the incurred overhead. 

5 Related Work 

The idea of broadcasting or pushing data from some in- 
formation source to a large number of receivers is being 
studied for more than a decade. Early work was done in the 
context of teletext and videotex systems[AWSfj, Won88], 
community information services[GBBL85, GifPO], as well 
as specialized database machines[HGLW87, BGH+92]. 
More recently, with the proliferation of wireless com- 
munication and mobile computing, it has gained much 
more research[IB94, FZ96] and commercial attention 

(e.g. [Poi, Air]). In terms of research, the focus has been 
mostly in optimized broadcast schedules[AAFZ95, X97], 
optimized techniques for data retrieval from a broadcast 
channel[AAFZ95, AFZ96], and power efficiency consider- 
ations for mobile environments[IVB94b, IVB94a]. 

Hybrid data delivery was first employed in the Boston 
Community Information System[Gif90] which combined 
broadcast and interactive communication to provide up-to- 
the-minute information to an entire metropolitan area. A 
prototype was built and was field-tested for a period of 
two years by about 200 users. The major conclusions of 
this experiment were that users valued both components 
of the hybrid architecture, and that this approach is indeed 
a very economic way to building large scale information 
systems. A hybrid teletext-videotex architecture was pro- 
posed in [WD88]. Their approach involved only broadcast 
delivery, but for both periodically pushed and upon-request 
pulled data with some ad hoc partition of the data into two 
groups. The same combination of delivery modes was con- 
sidered in [AFZ97]. In particular, they augmented the push- 
only architecture of broadcast disks[AAFZ95], by allowing 
clients to explicitly request data for expeditious delivery 
through the same broadcast channel. In that work, they 
explore the efficacy of a back-channel in a broadcast-only 
environment and discuss the involved trade-offs. 

Even closer to out work, are the adaptive techniques pro- 
posed in [IV941 and [DCK+97]. [IV941 proposes an algo- 
rithm that, based on fairly static access probabilities, assigns 
data and bandwidth to broadcast and on-demand delivery 
modes in a way that limits the maximum expected response 
time below a predefined threshold. Last in [DCK+97], they 
consider mobility of users between cells of a cellular net- 
work, and propose two variations of an adaptive algorithm 
that statistically selects data to be broadcast based on user 
profiles and registrations in each cell. 

6 Conclusions 

In this paper, we described an adaptive technique for hybrid 
data delivery that takes advantage of broadcast channels for 
massive data dissemination and unicast channels for data 

334 



demand not satisfied by the former. We first discussed 
how broadcast and unicast can work synergistically to yield 
high data service rates, and then presented an algorithm 
that, based on marginal gains and broadcast probing, con- 
tinuously adapts the broadcast content to match the hot-spot 
of the database. We showed that the hot-spot can be accu- 
rately obtained by monitoring the “broadcast misses” and 
therefore no other implicit knowledge on the actual usage 
of the broadcast data is necessary. This is one of the major 
distinctions between the work presented here and all other 
broadcast schemes which are dependent on accurate, com- 
prehensive, but not readily available statistics on workload 
access patterns. 

Our simulation experiments have demonstrated both the 
scalability and versatility of the proposed technique. Under 
the assumption that the server’s capacity is sufficient for 
servicing the demand for cold data, it performs very close to 
the optimal. An important result of is that the performance 
of this hybrid system depends only on the size of the hot- 
spot, and not on the volume of the workload. We have 
also shown that this adaptive scheme performs very well 
even under dynamic, rapidly changing workloads. The 
adaptation speed and the incurred overhead can be explicitly 
tuned as desired. 

We believe that these results have far reaching implica- 
tions, as they suggest an effective way of deploying large 
scale wide area information systems. Therefore, there is 
a lot of interesting work to be done in the near future. 
We are currently exploring many different issues includ- 
ing client querying, dealing with data of various sizes, 
multi-frequency broadcasting, efficient indexing schemes, 
overlapping data broadcast, forecasting for prefetching, and 
“on-time” data delivery. 
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