
Communication Speed Selection for Embedded Systems
with Networked Voltage-Scalable Processors �

Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh
Department of Electrical & Computer Engineering

University of California, Irvine, CA 92697-2625, USA
fjinfengl, chou, naderg@ece.uci.edu

ABSTRACT
High-speed serial network interfaces are gaining wide use in con-
necting multiple processors and peripherals in modern embedded
systems, thanks to their size advantage and power efficiency. Many
such interfaces also support multiple data rates, and this ability
is opening a new dimension in the power/performance trade-offs
between communication and computation on voltage scalable em-
bedded processors. To minimize energy consumption in these net-
worked architectures, designers must not only perform functional
partitioning but also carefully balance the speeds between com-
munication and computation, which compete for time and energy.
Minimizing communication power without considering computa-
tion may actually lead to higher energy consumption at the system
level due to elongated on-time as well as lost opportunities for dy-
namic voltage scaling on the processors. We propose a speed se-
lection methodology for globally optimizing the energy consump-
tion in embedded networked architectures. We formulate a multi-
dimensional optimization problem by modeling communication de-
pendencies between processors and their timing budgets. This en-
ables engineers to systematically solve the problem of optimal speed
selection for global energy reduction. We demonstrate the effec-
tiveness of our speed selection approach with an image process-
ing application mapped onto a multi-processor architecture with a
multi-speed Ethernet.

1. INTRODUCTION
Networked embedded processors are fast becoming the main-

stream in the architecture of embedded systems. Initially used
in automobiles and other control-oriented systems, they are now
found in everything from consumer electronics to peripheral de-
vices attached to workstations. A key trend is towards the use of
high-speed serial busses for system-level interconnect, including
FireWire, USB, and Ethernet. These “busses” are actually more
like networks, and the advent of systems-on-chip (SoC) is also
giving rise to a new class of on-chip network protocols that offer
compelling advantages as the interconnect of choice for complex

�This research was sponsored by DARPA grant F33615-00-1-1719
and Printronix Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

on-chip modules. In addition to better modularity, composability,
scalability, and form factor, high-speed serial network protocols are
also power efficient.

Power is an important objective in the optimization of many em-
bedded systems. Previous efforts in power optimization focused on
the processor, because not only was the CPU the main consumer
of power, but it also offered the most flexible options for power
management, including voltage and frequency scaling. By running
the processor at the minimum speed without violating any deadline,
its voltage can be reduced to a more energy-efficient, lower-power
level that actually consumes less energy per instruction.

Processor power has been reduced dramatically and is now a
smaller percentage of the overall system power, while communi-
cation interfaces are now consuming an equal if not larger share
of the system power. For example, an Intel XScale processor con-
sumes 1.6W at full speed, while a GigaBit Ethernet interface can
consume as much as 6W. Many of today’s communication inter-
faces support multiple data rates at different power levels, in ways
analogous to voltage scaling on processors. However, few research
works to date explore their use in power management in conjunc-
tion with the processors.

Previous co-design approaches to optimization of such systems
focused on functional partitioning among the processors to min-
imize communication, and hence communication power. How-
ever, existing partitioning techniques lack the ability to explore
the power consequences of processor and communication speeds.
These resources can compose synergistically or competitively. That
is, choosing a power efficient communication speed (respectively,
processor speed) in one part of the network may either increase
or decrease additional power-efficient opportunities for other re-
sources on the network.

We consider a class of networked embedded systems where the
processors are networked to execute task in a pipelined fashion and
must satisfy an overall latency constraint. The processors cannot
all be run at the slowest, most power-efficient speeds; instead, they
must compete for the available time and power with each other and
with the communication interfaces. A faster communication speed,
even at a higher energy-per-bit, can save energy by creating more
opportunities for subsystem shutdown or by freeing up more time
for voltage scaling the processors. Conversely, a low-power, low
energy-per-bit communication speed may actually result in higher
overall energy due to increased time in keeping the interface on.

Our objective is to minimize total energy for a given workload
on a networked architecture, where both the communication speeds
and processor speeds are selectable. Our proposed approach is to
formulate the energy consumed by the processors and communica-
tion interfaces with their power/speed scaling factors within their
available time budget. This enables us to solve the optimal speeds
systematically. We envision that this technique be integrated into

TARGET
DETECTION

FFT IFFT COMPUTE
DISTANCE

image

templates

targets
and ROIs

filtered
ROIs

targets and
their distancesROIs in

space-freq
domain

Node N1:
Target Detection / FFT

Node N2:
Filter / IFFT

Node N3:
Compute
Distance

Figure 1: Block diagram of the ATR algorithm.

the partitioning loop of an existing co-design framework. In this
paper, we demonstrate the effectiveness of our approach with an
image processing algorithm mapped onto a multi-processor archi-
tecture interconnected by a wired GigaBit Ethernet.

2. RELATED WORK
Previous works in co-design have explored distributed multi-

processor systems, communication protocol and speed selection,
and power management techniques. [11] presents communication
scheduling to work with rate-monotonic tasks, while [5] assumes
the more deterministic time-triggered protocol (TTP). [8] distributes
timing constraints on communication among segments through pri-
ority assignment on serial busses (such as control-area network)
and customization of device drivers. While these assume a bus or a
network protocol, LYCOS [6] integrates the ability to select among
several communication protocols (with different delays, data sizes,
burstiness) into the main partitioning loop. However, these and
many other works do not specifically optimize for energy mini-
mization by exploiting the processors’ voltage scaling capabilities.

Related techniques that optimize for power apply voltage scaling
to the processors while assuming a fixed communication data rate.
[3] uses simulated heating search strategies to find low-power de-
sign points for voltage scalable embedded processors. [7] performs
battery-aware task post-scheduling for distributed, voltage-scalable
processors by moving tasks to smooth the power profile. [10] pro-
poses a multi-processor architecture that consumes significantly
less power than a single processor on the same task by partition-
ing an image processing task onto four slower processors whose
workload is only 1/4. However, all these techniques focus on the
computational aspect without exploring the speed/power scalability
of the communication interfaces.

Existing techniques cannot be readily combined to explore many
timing/power trade-offs between computation and communication.
The quadratic voltage scaling properties for CPU’s do not general-
ize to communication interfaces. Even if they do, these techniques
have not considered the partitioning of power budgets and timing
among components across the network. Selecting communication
attributes by considering deadlines without considering power will
lead to unexpected, often incorrect results at the system level.

3. MOTIVATING EXAMPLE
We use an automatic target recognition (ATR) algorithm [9] as

our motivating example. Its block diagram is shown in Fig. 1. The
algorithm first detects a few targets on the input image. For each
target, a region of interest is extracted and filtered by several pre-
defined templates. Finally, the distance of each target is computed.
A deadline is imposed on processing each frame.

The original ATR algorithm is a serial algorithm. We recon-
structed a parallel version and mapped it onto multiple processors
in a pipelined organization. In this paper, we partition the algo-
rithm onto three processors, shown as blocks with dashed borders
in Fig. 1. In general, parallelizing an algorithm has the effect of in-
creasing performance, reducing power, or both. Even though more
processors are involved, each processor now has reduced workload

D

RECV
@10Mb/s

SEND
@10Mb/s

PROC
@500MHz

D

RECV
@100Mb/s

SEND
@100Mb/s

PROC
@300MHz

(a) lower-speed communication requires
high-speed computation with more CPU power/energy

(b) high-speed communication allows the CPU
to operate at a lower speed with reduced CPU power/energy

Time

Power

Time

Power

Figure 2: Choices for communication and computation speeds.

and can afford to run at a much slower speed and voltage level,
where it consumes significantly less energy per instruction. Mean-
while, parallelism compensates for the reduced performance on in-
dividual processors, although inter-processor communication con-
sumes both time and energy.

Fig. 2 gives such an example. We assume that each process
is modeled by a computation task PROC and two communication
tasks RECV and SEND. RECV receives data from either external
input or from another processor. The data is processed by PROC,
and the results are transmitted by communication task SEND to
the next stage or output. Clearly RECV , PROC, and SEND must
be fully serialized for a given stage. In addition, SEND must finish
before its deadline D. PROC is mapped onto a voltage-scalable
processor, while the corresponding SEND and RECV tasks are
mapped onto a communication interface with multiple data rates
and different power levels. In this case, a node consists of an Intel
XScale and a 10/100/1000Base-T Ethernet interface.

The Ethernet interface is a prime target for power management,
because it consumes 4 times the power as the CPU at peak speed.
If the communication interface were voltage scalable in the same
way as the CPU, then the designer would choose the low-power,
slow data rate for reducing power and energy at the system level.
Fig. 2(a) shows this design point, where the data rate is 10 Mbps.
However, this turns out not to be energy efficient. Because of
the deadline D, communication (RECV , SEND) and computation
(PROC) compete for this time budget. By slowing down commu-
nication, it leaves less time budget for computation, thereby forc-
ing the processor to operate at 500MHz or faster in order to meet
the deadline. Conversely, if a low-power CPU speed were selected
first, then it would cut the time budget for the communication, forc-
ing a higher-power, faster data rate. This is an example where com-
munication must not be considered as fixed timing and power over-
head.

Fig. 2(b) shows a solution that uses high-speed communication
(100 Mbps) to leave more time for computation, such that the pro-
cessor can operate at 300MHz with reduced power and energy. Al-
though extra energy could be allocated to communication, if the
energy saving on the processor could compensate for this cost, then
(b) would be a more energy-efficient design point. There is no sim-
ple correlation between the communication speed and the power or
energy at the system level. System-level energy consumption is de-

termined by not only the processors and communication interfaces,
but also the hardware configuration and the dependencies imposed
by the application. Therefore, an energy-efficient design must con-
sider all these aspects as an entire system.

The communication-computation interaction becomes more in-
tricate in a multi-processor environment. Any data dependency be-
tween different nodes must involve their communication interfaces.
The communication speed of a sender will not only determine the
receiver’s communication speed but also influence the choice of the
receiver’s computation speed. For example, in the system-pipelined
version of the ATR algorithm, the communication speed on the first
node will have a chain effect on all other nodes in the system. Even
if this speed setting were locally optimal for the first node, it would
still lead to an inferior system design.

4. PROBLEM FORMULATION
This section formulates the problems of minimizing energy con-

sumption in a networked multi-processor embedded system. Sec-
tion 4.1 defines such a system-level performance/energy model for
both computation and communication components. Section 4.2
formulates the energy minimization problems and discusses their
solutions. Section 4.3 outlines the scheduling technique for avoid-
ing data collision on the shared communication medium and presents
the schedulability conditions for such a multi-processor system.

4.1 Basic definitions
In the scope of this paper, a multi-processor system is a network

of M processing nodes Ni; i = 1;2; : : : ;M connected by a shared
communication medium. Each processing node consists of the fol-
lowing components: a processor, a local memory, and one or more
communication interfaces that send and/or receive data from other
processing nodes. We assume on each processing node, only the
processor and the communication interfaces are power-manageable.
The memory draws a fixed amount of power and is not considered
in the energy optimization problem. The power consumption by
the communication medium is interpreted to be the total power con-
sumed by all active communication interfaces. Therefore, we focus
only on the processors and communication interfaces.

We assume the processors are voltage-scalable, and their voltage-
scaling characteristics can be expressed by a scaling function Scalep
that maps the CPU frequency to its power level. We also assume
that each communication interface has a scaling function that char-
acterizes the power levels at different communication speeds (data
rates). Moreover, we define two separate scaling functions for
sending and receiving. They are

Pp = Scalep(Fp); Pr = Scaler(Fr); Ps = Scales(Fs) (1)

where Pp and Fp denote the power level and the clock frequency of
the processor, Pr and Fr denote the power and the bit rate for re-
ceiving, and Ps and Fs denote those for sending, respectively. Most
communication interfaces can support only a few discrete combi-
nations of power vs. speed, e.g., 10/100/1000 Mbps Ethernet.

A processing job assigned to a processing node has three tasks:
RECV , PROC, and SEND, which must be executed serially in that
order. RECV and SEND are communication tasks that receive and
send data on the communication interfaces, respectively, and PROC
is a computation task that processes the received data on the pro-
cessor.

The workload for each task is defined as follows. For commu-
nication tasks RECV and SEND, workload Wr and Ws indicate the
number of bits to be received and sent, respectively. For the com-
putation task PROC, the workload Wp is the number of cycles.

Let Tp;Tr;Ts denote the delays of tasks PROC, RECV and SEND,
respectively. They can all be calculated as the workload divided by
the speed of the component on which the task is executed. That is,

Tp =
Wp

Fp
; Tr =

Wr

Fr
; Ts =

Ws

Fs
(2)

(2) is reasonable for processors executing data-dominated pro-
grams, where the total cycles Wp can be analyzed and bounded
statically. However, it does not hold true in general if the effec-
tive data rate can be reduced by collisions and errors on the shared
communication medium. Section 4.3 proposes a scheduling tech-
nique for avoiding collision on the shared medium. To model the
non-ideal aspect of the medium, we introduce the communication
efficiency terms, ρr and ρs, 0� ρr;ρs � 1, such that Tr =

Wr
ρrFr

and

Ts =
Ws

ρsFs
.

Note that ρr and ρs need not be constants, but may be functions
of communication speeds Fr;Fs. Different communication speeds
may incur different error rates. For brevity, our experimental re-
sults assume an ideal communication medium (ρr = ρs = 1) with-
out loss of generality. A more practical communication model can
be directly applied, since ρr and ρs can be very well bounded for a
collision-free medium.

There is a deadline D on each processing job. Since each job
includes three serialized tasks, Tr+Tp+Ts�D, if there is any slack
time available, it can always be used to slow down task PROC by
voltage scaling to reduce energy. Therefore, we assume the last
task SEND finishes just before the deadline. That is,

D = Tr +Tp +Ts (3)

The energy consumption of a task is the power-delay product.

Ep = PpTp; Er = PrTr; Es = PsTs (4)

where Ep;Er;Es are the energy consumption for tasks PROC, RECV ,
and SEND, respectively. For one node Ni with tasks PROCi, RECVi,
and SENDi, the total energy of node i is

Ei = Epi +Eri +Esi (5)

In (5) we ignore the power level of the processor during the ex-
ecution of communication tasks RECV and SEND. The processor
can remain in a low power mode during DMA cycles. Similarly,
the communication interface can be set to a low power mode dur-
ing PROC. We leave out these terms for brevity without loss of
generality, and they can always be appended to (5) for a more re-
alistic model. Finally, the total energy of the system is the sum of
energy consumption on each node:

Esys =
M

∑
i=1

Ei (6)

4.2 Problem statements
We start our problem statements from a single node (Fig. 3); then

we extend the problem to the entire system with multiple nodes.

Problem 1 (Single Node) Given a processing node N (character-
ized by Scaler;Scalep;Scales), the workload Wr ;Wp;Ws, and dead-
line D, find the communication speeds Fr;Fs and the processor
speed Fp that minimize the energy consumption E for this node.

D

RECV SENDPROC

Time

Power

Pr
Ps

Pp

Time:
Tr = Wr / Fr

Time:
Ts = Ws / Fs

Time:
Tp = Wp / Fp

process

Wp cycles on processor sending
Ws bits

receiving
Wr bits

power: Pr
speed: Fr

power: Pp
speed: Fp

power: Ps
speed: Fs

Figure 3: Single processing node.

D1

SEND1PROC1

Time

Power

Ps1Pp1

Ts1 =
Ws1 / Fs1

Tp1 =
Wp1 / Fp1

D2

RECV2 PROC2

Time

Power

Pr2

Tr2 =
Wr2 / Fr2 Tp2 =

Wp2 / Fp2

(b) synchronization between
the sender and receiver

Pp2

T1 = Ts1 = Tr2

Porcessing
node N1

Porcessing
node N2

sender N1 receiver N2

Wp1 cycles on processor Wp2 cycles on processor

Ws1 = Wr2 bits on
communication

(a) a sender-receiver system

D

SEND1PROC1

Time

Power

Ps1
Pp1

Ts1 =
Ws1 / Fs1

Tp1 =
Wp1 / Fp1

D

RECV2 PROC2

Time

Power

Pr2

Tr2 =
Wr2 / Fr2

(c) pipelined sender-receiver

Pp2

N1

N2

PROC2 Pp2

Tp2 =
Wp2 / Fp2

T1 = Ts1 = Tr2

Figure 4: A two-node sender-receiver system.

Solution By (1)–(5), E can be expressed in terms of Tr;Ts,

E = Scaler

�
Wr

Tr

�
Tr +Scales

�
Ws

Ts

�
Ts

+Scalep

�
Wp

D�Tr�Ts

�
(D�Tr �Ts)

The problem can be solved mathematically by examining
d2E

dTrdTs
, if all scaling functions are continuous on second-order

derivatives. The speeds Fr;Fs; and Fp can be derived from
Tr;Ts.

If Scaler and Scales are discrete functions, then all combina-
tions of (Pr;Fr)� (Ps;Fs) must be enumerated by

E = Pr
Wr

Fr
+Scalep

Wp

D� Wr
Fr
� Ws

Fs

!�
D�

Wr

Fr
�

Ws

Fs

�
+Ps

Ws

Fs

This two-dimensional optimization problem can be reduced to
one-dimensional if the node does not receive data (Wr = 0), or it
does not send data (Ws = 0). If both Wr and Ws = 0 are zero, then
the problem is reduced to the well-known voltage scaling problem
where the slowest speed on the processor yields the minimum en-
ergy. The other variation is that when Fr = Fs, meaning that RECV
and SEND use the same communication speed, the problem is also
reduced to a one-dimensional problem.

The simplest multi-processor system consists of two nodes: one
sender and one receiver. It is shown in Fig. 4.

Problem 2 (Dual-Node Sender-Receiver) Given a system consist-
ing of two nodes: sender N1 (Scalep1 , Scaler1 , Scales1) and receiver
N2 (Scalep2 , Scaler2 , Scales2), workload Wr1 = 0, Wp1 , Ws1 and Wr2 ,
Wp2 , Ws2 = 0, and deadlines D1, D2, find processor speeds Fp1 ;Fp2

and communication speeds Fs1 , Fr2 that minimizes energy Esys for
the system.

Solution In the SEND�RECV pair, Ws1 =Wr2 . We also assume
the sender and receiver have same communication speed,
Fs1 = Fr2 , therefore, Ts1 = Tr2 . In practice, Fs1 � Fr2 , but
we assume Fs1 = Fr2 to make the problem one-dimensional.
Let T1 = Ts1 = Tr2 . The total energy then is a function of T1,

Esys = Scalep1

�
Wp1

D1�T1

�
(D1�T1)

+

�
Scales1

�
Ws1

T1

�
+Scaler2

�
Wr2

T1

��
T1

+Scalep2

�
Wp2

D2�T1

�
(D2�T1)

To enumerate combinations of (Ps1 ;Fs1)� (Pr2 ;Fr2), since
Fs1 = Fr2, the combination becomes (Ps1 ;Pr2 ;Fs1), which is
one dimensional. The enumeration function is omitted.

When D1 = D2 = D, the serialized tasks on the sender N1 and
the receiver N2 can be pipelined as shown in Fig. 4(c). The system
becomes a two-node pipeline.

An M-node pipeline consists of nodes Ni; i = 1;2; : : : ;M, among
which each node Ni receives data from the previous node Ni�1 (ex-
cept the first node N1), and sends the results to the next node Ni+1
(except the last node NM). Fig. 5 shows an example of a three-node
pipeline.

Problem 3 (M-node Pipeline) Given an M-node pipeline consist-
ing of M nodes Ni : (Scalepi ;Scaleri ;Scalesi); i = 1;2; : : : ;M with
workload Wpi ;Wri ;Wsi , and a deadline D for all nodes, find all pro-
cessor speeds Fpi and communication speeds Fri ;Fsi that minimize
energy Esys for the system.

Solution Between each SEND�RECV pair, Wsi =Wri+1 , and the
sender and receiver have same communication speed, Fsi =
Fri+1 , therefore, Tsi = Tri+1 . Let

Ti =

8<
:

Tr1 for i = 0
Tsi = Tri+1 for i = 1;2; : : : ;M�1
TsM for i = M

indicating the delays of M+1 instances of data communica-
tion. The expression of total energy is

Esys =
M

∑
i=1

0
@ Scaleri

�
Wri
Ti�1

�
Ti�1 +Scalesi

�
Wsi
Ti

�
Ti

+ Scalepi

�
Wpi

D�Ti�1�Ti

�
(D�Ti�1�Ti)

1
A

assuming no collision on the shared communication medium
(discussed later in Section 4.3). This is an (M+1)-dimension
optimization on variables T0;T1; : : : ;TM . The enumeration
space is also (M+1)-dimensional.

4.3 Communication scheduling
Fig. 5(c) shows a pipelined view of the three-node pipeline by

folding the tasks on different nodes to a common time interval with
a length D. Note that there seem to be two instances of task PROC
on node N3. This does not mean that task PROC on node N3 is

D

RE
CV

SE
NDPROC

Time

Power T0 =
Tr1

Ts1= Tr2

Tp1

N1

Wp1 cycles on processor

communicating
Ws1 =Wr2 bits

receiving
Wr1 bits

N2

Wp2 cycles on processor

communicating
Ws2 =Wr3 bits

D

RE
CV

SENDPROC

Time

Power T1=
Tr2=Ts1

Ts2 = Tr3

Tp2

N3

Wp3 cycles on processor

sending
Ws3 bits

D

RECV SE
ND

PROC

Time

Power T2 =
Tr3 =Ts2

T3 =
Ts3

Tp3

(a) three pipelined processing nodes

(b) synchronization between processing nodes

D

RE
CV

SE
NDPROC

Time

Power

T0

T1

Tp1

D

RE
CV

SENDPROC

Time

Power
T1

T2

Tp2

D

RECV SE
ND

PROC

Time

Power
T2

T3

Tp3

(c) schedule of the three-node pipeline without collision on the shared medium

SENDPROC

T2

Tp2

RECV SE
ND

PROC

T2
T3

Tp3 - T1

SE
ND

PROC

T3

Tp3 - T1

PR
OC

T1

N1

N2

N3

N1

N2

N3

Figure 5: A 3-node communication pipeline.

preempted. In fact, each instance is a part of an integrated task
PROC across the iteration boundary. In this particular view of the
pipeline, the iteration boundary resides in the middle during the
execution of task PROC. Such a technique is called wrapping and
has been well-studied [4].

Fig. 5(c) shows that communication activities are shifted away
from each other, such that at any given time, there is at most one
active communication instance. This is especially meaningful if all
nodes share the communication medium such as Ethernet, PCI bus,
etc. If data collision will not occur, then our estimation on both
performance and energy of the whole system can be well bounded.
Collision is always undesirable because retransmission costs both
time and energy. Communication activities should be scheduled
such that the system is collision-free.

Lemma 1 (Collision-free Condition) An M-node pipeline does not
have collision on the shared communication medium iff
9Ti; i = 0;1; : : : ;M (where Ti corresponds to the speed settings on
all nodes), such that the utilization of the shared medium is less
than or equal to 1. That is,

U =
M

∑
i=0

Ti

D
� 1 (7)

If Lemma 1 cannot be satisfied, then the communication tasks in-
volved in collision will incur extra delay and energy, and thus will
force the processors to run faster with even more energy. Given
that the extra communication delay is unbounded due to collision,
the whole set of assumptions to support our analysis will be invali-
dated.

Node N1:
Target

Detection
/ FFT

Wp1 =
1590 K cycles

Ws1 = Wr2
= 14K bits

Wr1 =
 128K bits

Node N2:
Filter
/ IFFT

Wp2 =
4074 K cycles

Ws2 = Wr3
= 42K bits

Node N3:
Compute
Distance

Wp3 =
2639 K cycles

Ws3 =
14K bits

(b) single node configuration
Wp = 8303 K cycles

(a) three-node configuration

Figure 6: ATR mapped to three-node or single node.

Lemma 2 (Necessary Condition for Schedulability) An M-node
pipeline is schedulable, i.e., able to meet deadline D, only if
8 nodes Ni; i = 1;2; : : : ;M,

min(Tri)+min(Tpi)+min(Tsi)�D (8)

Lemma 2 states the overload condition of a single node: if its
workload cannot be completed before the deadline by operating at
the maximum speeds (leading to the minimum execution delays,
accordingly) for both communication and computation, then this
node will fail to meet the deadline and thus the whole pipeline will
be malfunctioning. The minimum execution delays can be derived
from (2) by applying the maximum speeds, assuming ideal com-
munication medium. A more realistic communication model can
be also applied to calculate the minimum communication delays.

Lemma 3 (Sufficient Condition for Schedulability) An M-node
pipeline is schedulable to meet a deadline D, if
(1) There is no collision on the shared medium (Lemma 1), and
(2) No node is overloaded (Lemma 2).

Lemma 3 says that the system is schedulable when conditions
in Lemma 1 and Lemma 2 are satisfied. However, when the sys-
tem has collision but no overloaded node, the schedulability is un-
known.

5. ANALYTICAL RESULTS
To evaluate our method, we experimented with mapping the ATR

algorithm onto two architectures: a three-node pipeline and a sin-
gle processor. The three-node mapping is shown in Fig. 6 as solid
bars. The input data size is 128K bits, and the output is 14K bits
per frame. In addition, the internal communication requires 14K
bits and 42K bits per frame, respectively. The one-processor map-
ping is shown as the surrounding dashed bar. The input and output
data rates are the same as before, and there is no internal commu-
nication. We assume the deadline D = 20ms for both architectures.

Each of our hardware nodes consists of an XScale processor and
an LXT-1000 Ethernet interface from Intel. The Scalep and Scales
(same as Scaler) functions, which indicate the power vs. perfor-
mance characteristics of a node, are extracted from their data sheets
[1, 2] and are shown in Fig. 7 and 8.

Fig. 9 shows the energy consumption for processing one im-
age frame at different communication speeds on the one-node and
three-node architectures. In both cases, the low-power, 10 Mbps
communication speed results in the highest energy, while the highest-
power, fastest 1000-Mbps communication speed achieves minimum
energy. The three-node pipeline consumes lower energy than the
single processor case, and it is conceivable that additional proces-
sors can achieve even more energy-efficient design points.

In this particular example, low-power communication at 10 Mbps
is undesirable for both the 1-CPU and 3-CPU configurations. For
the single node case, the low-speed communication left so little

Figure 7: Power vs. performance of the XScale processor.

Mode

10M bps 800 mW

100M bps 1.5W

1000M bps 6W

Power consumption

Figure 8: Power modes of the Ethernet interface.

5.27

23.5

5.75
3.37

6.93

36.5

0

5

10

15

20

25

30

35

40

1-node
10Base-T

1-node
100Base-T

1-node
1000Base-T

3-node
10Base-T

3-node
100Base-T

3-node
1000Base-T

Energy (mJ)

(invalid) (optimal for
1-node)

(optimal for
3-node)

Figure 9: Analytical results.

time for computation, that the processor would have to operate at
1.5GHz in order to meet the deadline. This is an invalid solution,
because it exceeds the 1GHz maximum clock rate. We say that the
single node is overloaded and cannot meet the deadline according
to Lemma 2. Even if the processor could support a higher clock rate
at 1.5GHz, this solution would still demand much more energy.

In the three-node configuration, 10 Mbps communication not
only requires more energy, but it is also dangerously close to vio-
lating the schedulability condition by Lemma 3. By (7), the utiliza-
tion U = 0:97. Given that Ethernet is not an ideal communication
medium, in practice it will be overloaded (U > 1) when overhead is
taken into account. By Lemma 1, when collision occurs, the system
will spend even more (potentially unbounded) time and energy than
estimated. By Lemma 3, the system’s ability to meet the deadline
is undecidable.

It is notable that given properties of the Ethernet interface in
Fig. 8, 1000 Mbps communication will always lead to lower energy
energy consumption, even though it has the highest power rating.

This is due to the fact that at the 1000 Mbps data rate, the interface
consumes the least energy per bit. Thus, it consumes the least en-
ergy for a fixed amount of data while leaving the most opportunity
(time) for reducing CPU energy. However, a communication speed
with the lowest energy-per-bit will not necessarily lead to the min-
imum energy at the system level, if it is not the highest speed. In a
general case, optimal speed selection is based on many factors, in-
cluding the processor, the communication interfaces, the hardware
configuration (number of nodes), the application, and its mapping
to the architecture (partitioning). The optimal speed selection may
involve a mixture of heterogeneous speed settings between differ-
ent nodes. For example, the node N2 may communicate with N1 at
1000 Mbps and with N3 at 100 Mbps.

6. CONCLUSION
This paper presented a communication speed selection technique

for minimizing energy consumption in networked embedded pro-
cessors. Communication and computation represent two classes of
resources that compete over opportunities for operating at the most
power-efficient speeds, but the intricate dependencies between them
require that speed selection for optimal energy be performed at the
system level. Our formulation captures the data/precedence depen-
dencies and their relations to the speed between all pairs of comput-
ing/communicating nodes and is generally applicable to networks
of embedded processors, as well as single processor architectures
that must perform I/O. Our communication speed selection opti-
mizes for a particular functional partitioning scheme but we en-
vision that it will be easily incorporated into most existing func-
tional partitioning co-design loops for enhancing the exploration of
power/performance trade-offs in networked embedded processors
and systems-on-chip architectures.

7. REFERENCES
[1] INTEL ethernet PHYs/transceivers. http://developer.intel.com/-

design/network/products/ethernet/linecard ept.htm.
[2] INTEL XScale microarchitecture.

http://developer.intel.com/design/intelxscale/.
[3] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid

global/local search strategies for dynamic voltage scaling in
embedded multiprocessors. In Proc. International Symposium on
Hardware/Software Codesign, pages 243–248, 2001.

[4] L.-F. Chao, A. LaPough, and E. H.-M. Sha. Rotation scheduling: A
loop pipelining algorithm. IEEE Transactions on Computer Aided
Design, 16(3):229–239, March 1997.

[5] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access
optimization for distributed embedded systems. IEEE Transactions
on VLSI Systems, 8(5):472–491, 2000.

[6] P. V. Knudsen and J. Madsen. Integrating communication protocol
selection with hardware/software codesign. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
18(8):1077–1095, August 1999.

[7] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed
real-time embedded systems. In Proc. Design Automation
Conference, pages 444–449, June 2001.

[8] R. Ortega and G. Borriello. Communication synthesis for distributed
embedded systems. In Proc. International Conference on
Computer-Aided Design, pages 437–444, 1998.

[9] R. Sims. Signal to clutter measurement and ATR performance. Proc.
of the SPIE - The International Society for Optical Engineering,
3371(1):13–17, April 1998.

[10] E. F. Weglarz, K. K. Saluja, and M. H. Lipasti. Minimizing energy
consumption for high-performance processing. In Proc. Asian and
South Pacific Design Automation Conference, pages 199–204, 2002.

[11] W. Wolf. An architectural co-synthesis algorithm for distributed
embedded computing systems. IEEE Transactions on VLSI Systems,
pages 218–229, June 1997.

