
Clustering by Power Control in Ad Hoc Networks
Vikas Kawadia and P. R. Kumar

Department of Electrical and Computer Engineering, and Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, 1308 West Main St. Urbana, IL-61801.

E-mail:{kawadia,prkumar}@uiuc.edu

Abstract—
In earlier work [1], it was shown that when nodes are

uniformly distributed, then, asymptotically as the number
of nodes is increased, a common transmit power level is al-
most optimal with respect to the traffic carrying capacity
of the network. In [2] this observation was exploited, and
a network layer protocol for power control was developed
which ensured convergence to the lowest common power
level which ensured connectivity. In this paper, we con-
sider the problem of power control for situations which fall
short of the asymptotic regime where nodes may be non-
homogeneously dispersed in space. In such situations, one
seeks to employ per packet power control depending on the
source and destination of the packet. We address the prob-
lem of clustering that results and provide three solutions
for joint routing and clustering by power control for ad hoc
networks. The first protocol, Clusterpow provides a mech-
anism for implementing QoS a la Diffserv where power is
traded for latency. The second, Tunnelled Clusterpow, al-
lows a finer optimization by using encapsulation. The last,
MINPOW, whose basic idea is not new, provides an optimal
routing solution with respect to transmit power, but does
not readily allow tuning of packet latencies. Our contri-
bution includes a clean implementation of MINPOW at the
network layer without any physical layer support. We es-
tablish that all three protocols are loop free, while also il-
lustrating how a slightly different approach could lead to
packets getting into infinite loops. We provide the software
architectural framework of our implementation as a net-
work layer protocol. The architecture works with any rout-
ing protocol. Details of the implementation in Linux are
also provided.

I. INTRODUCTION

The power control problem is to choose the transmit
power level for every packet in a wireless ad hoc network.
The per packet choice is to be guided by several consider-
ations. The choice of transmit power, and thus the range
effect the traffic carrying capacity of the network. In [1]

This material is based upon work partially supported by the US-
ARO under Contracts DAAD19-00-1-0466 and DAAD 19-01010-465,
DARPA under Contracts F33615-01-C-1905 and N00014-01-1-0576,
ONR unser Contract N00014-99-1-0696, and AFOSR under Contract
Af-DC-5-36128.

(a) Homogeneous spatial
dispersion of nodes

(b) Nodes non-
homogeneously dispersed

Fig. 1. Homogeneous vs clustered networks

it is shown that, generally, after taking into consideration
the additional relaying burden of using small hops ver-
sus the interference caused by long hops, it is optimal to
reduce the transmit power level, if one wants to increase
the traffic carrying capacity of the entire network. Addi-
tionally, the choice of power level directly affects battery
life. Moreover, there is an indirect affect since routing is
also affected by the ranges of the transmitters, which de-
pend on the transmit power levels. In [2] it was shown
that for the commonly used propagation path loss atten-
uation models, low power levels are commensurate with
power optimal routing. This was done by showing that
the latter necessarily results in planar graphs of power op-
timal routes, with only nearby nodes exchanging packets.
As noted, power control directly impacts routing and thus
cannot be considered in isolation. A further factor to be
considered is that power control affects packet end-to-end
latency. With small power levels, a packet will take a large
number of hops which linearly increases latencies due to
the packetization delay at each node.

Given the complexity of considerations, how does one
i) conceptualize the power control problem, ii) determine
how to trade off the multiple objectives of capacity, bat-
tery life and latency, and iii) develop a protocol which is
modular and elegant enough to work with the OSI archi-
tecture?

A first cut solution was presented in [2]. A net-
work layer protocol was developed which ensured that the

transmit power used by all the packets, at all the nodes,
would converge to a common power level: the lowest
power level at which the network is connected. A soft-
ware architecture was also developed with the requisite
properties of modularity and layering. Also provided was
an implementation in the Linux kernel.

When nodes are homogeneously dispersed in space,
as in Fig. 1(a), which is the case asymptotically when a
large number of nodes are uniformly distributed, then the
choice of a common transmit power level has several ap-
pealing features and properties. However, when nodes are
non-homogeneously dispersed as in Fig. 1(b), then choos-
ing the lowest common power level for all nodes that re-
sults in network connectivity will imply that the common
power level is dictated by outlying nodes, those which are
far from others, as the node F in Fig. 2. All nodes, ex-
cept F, are mutually reachable at 1 mW. We say that these
nodes form a 1 mW cluster and F is outside this clus-
ter. F can be reached from some of the nodes of the 1
mW cluster but only by using a power level of 100 mW.
The COMPOW algorithm, which converges to the low-
est power level such that the network is connected, will
in this case converge to 100 mW. Thus every node in the
network will be forced to use 100 mW even though 1 mW
is enough for most communications. Thus, the outlying
nodes force all the other nodes to use a higher power level
since the protocol works to ensure a common power level
at all the nodes.

However, such non-homogeneous scenarios are ripe for
clustering. One wishes to group nodes into clusters, with
possibly multiple levels of clustering hierarchy, i.e., sev-
eral clusters at level k form a cluster at level k+1, and use
multiple levels of power in a manner commensurate with
the multiple layers of clustering. The clustering of nodes
cannot be based just on the geographical co-ordinates of
a node since the presence of obstacles and shadowing in
a wireless channel may prevent two nodes from forming
a link at a certain power level, even if they are in close
proximity. Power control should also be done in conjunc-
tion with routing since they affect each other. Power con-
trol cannot be done without keeping connectivity in mind,
which is known only through the existence of routes. On
the other hand, routing depends on power control since the
power level dictates what links are available for routing.

A further factor is that we wish to provide QoS a la Diff-
serv for the latency of packets, which is not possible in
COMPOW. Transmit power affects latency since choos-
ing low power levels forces a packet to travel over many
hops of small distance. With packetization delay taken
into account, the end-to-end latency grows at least linearly
in the number of hops. This QoS allowing a trade-off be-

1 mW
100 mW

F

1 mW cluster

Fig. 2. A common power level is not appropriate for non-
homogeneous networks.

tween latency and power levels also needs to be taken into
account architecturally, and should be resolved in a man-
ner compatible with the layering and modular architec-
ture. Before presenting our solutions considering all the
above factors, we digress for a brief survey of the litera-
ture.

A. Related Work

Most of the work on the power control problem, i.e.,
the problem of choosing the transmit power for every
packet in an ad hoc network, can be classified into one
of three categories. The first class comprises of strategies
to find an optimal transmit power to control the connectiv-
ity properties of the network, or a part of it. Power control
is conceptualized as a network layer problem in [2], and
the COMPOW protocol is proposed. It is proposed in [3],
that each node adjust its transmit power so that its degree
(number of one-hop neighbors) is bounded. A distributed
topology control algorithm using direction information is
proposed in [4]. [5] proposes using transmit power control
to optimize the average end-to-end network throughput by
controlling its degree. The second class of approaches
could be called power aware routing. Most schemes use
some shortest path algorithm with a power based metric
rather than a hop count based metric. Some suggestions
for the metric in [6] include energy consumed per packet,
time to network partition, variance in battery life of nodes
and the energy cost per packet. Some other schemes in
this class are proposed in [7], [8], and [9]. The third class
of approaches aim at modifying the MAC layer. [10] sug-
gests modifying IEEE 802.11’s handshaking procedure to
allow nodes to transmit at a low power level. [11] pro-
poses enabling nodes to power themselves off when not
actively transmitting or receiving.

The clustering problem pertains to classifying nodes
hierarchically into equivalence classes according to cer-
tain attributes. These attributes could be node addresses
[12], geographical regions or zones [13], or a small neigh-
borhood(typically 1 or 2 hop) of certain nodes elected as
cluster-heads or leaders, as in [14]. The leader election

or the cluster set up phase uses heuristics like node ad-
dresses, node degrees, transmission power, mobility or
more sophisticated node weights combining the above at-
tributes, as in WCA [15], and in DCA [16]. Cluster-
heads can be used for routing, for resource allocation
among nodes in its cluster [17], and for network man-
agement. Cluster-heads are used as base stations to em-
ulate power control as in cellular networks in [18]. Most
of the schemes for ad hoc networks take care of cluster
maintenance, in addition to cluster formation, to take care
of the dynamic network conditions. Gateway nodes are
also elected in some cases to ensure connectivity among
clusters. Clustering can also be done implicitly without
electing cluster-heads and gateways, as in ZRP [19], and
in GPS based hierarchical link state routing [13]. Some of
the algorithmic aspects of clustering are analyzed in [20]
and [21].

The goal of clustering could be to reduce route discov-
ery overhead (by address space aggregation or by local-
izing control messages), to optimize resources like bat-
tery power and network capacity, or for ease of address-
ing and management. IP subnetting is a good example of
clustering for routing efficiency, as well as ease of man-
agement. Routing control message reduction is achieved
by backbone formation in Spine based routing [22], and
in VDBP [23], where a fraction of the nodes, called the
backbone nodes, assume responsibility for route discov-
ery. However, address space aggregation, where a node’s
address is determined by the cluster it belongs to, seems
feasible only in quasi-static or infrastructure type ad hoc
networks as in Landmark [24], or in networks with a nat-
ural logical hierarchy (e.g a battlefield). For route ag-
gregation in generic ad hoc networks with mobility, the
overhead of an addressing service necessary to inform all
other nodes of the dynamically changing addresses of all
the nodes in the network, seems to be exorbitant. How-
ever, HSR [25] does provide such a location management
service.

B. This Work

In this work we consider the power control problem and
the clustering problem in non-homogeneous networks,
that is, where nodes can exist in clusters. The goal is to
choose the transmit power level, so that most of the intra-
cluster communication is at lower transmit power levels,
and a higher transmit power level is used only when go-
ing to a different cluster. We provide dynamic and im-
plicit clustering of nodes based on transmit power level,
rather than on addresses or arbitrary geographical regions.
There are no leader or gateway nodes. The clustered struc-
ture of the network is automatically manifested in the way

routing is done. We propose two solutions: the Cluster-
pow power control protocol and the Tunnelled Clusterpow
power control protocol. The Clusterpow protocol also
provides an architecture for implementing DiffServ type
QoS where the power of a packet can be traded off for la-
tency. The Clusterpow protocol has been implemented in
the Linux kernel.

We also present the MINPOW routing and power con-
trol protocol, which is a distance vector routing protocol
with transmit power as the link cost. We consider the
problem of effectively estimating the cost and finally pro-
vide a simple and efficient implementation of MINPOW
in the Linux kernel without any physical layer support.

We have assumed a flat addressing space for nodes. A
hierarchical addressing scheme, where node addresses are
dynamically constructed based on the cluster in which it is
present, needs an efficient addressing or location manage-
ment service which can advertise all addresses to every-
body. We are investigating ways to achieve this efficiently
in our architecture.

It should be noted that the 4 way handshake of the IEEE
802.11 MAC protocol [26], works smoothly only when
a common power level is used throughout the network.
This is because a CTS sent at a lower power level may
not silence some nodes, which are capable of interfering
with the ongoing transmission by using a higher power
level. Thus any power control or clustering scheme using
multiple power levels at the same time, has to pay some
throughput penalty due to the MAC interference caused,
when 802.11 MAC is used. This may not be the case for
other MAC protocols which use other means like control
channels as in DBTMA [27], or pseudo-random seeds as
in SEEDEX [28], for reserving the channel. However,
802.11 is the most common MAC, especially on off-the-
shelf equipment, and we should take some care to lessen
the problem. A high power level should be used sparingly,
and most of the intra-cluster communication should use a
low common power level. Long distance communication
is expensive, either because it silences too many nodes, or
because it disrupts ongoing traffic. As will be seen in the
sequel, the solutions we suggest comply with the above
guidelines. In fact, the COMPOW protocol proposed in
earlier work [2], is probably the only power control pro-
tocol that does not hamper 802.11, but it works well for
homogeneous networks only, and requires proactive rout-
ing protocols.

II. THE CLUSTERPOW POWER CONTROL PROTOCOL

The Clusterpow power control protocol has been de-
signed for power control and routing in non-homogeneous
networks. A single route in Clusterpow can consist of

S N1

N3

N2

100 mW

100 mW

10 mW

1 m
W

D

1 mW cluster
10 mW cluster

Fig. 3. Routing by Clusterpow in a typical non-homogeneous net-
work.

hops of different transmit power such that the clustered
structure of the network is respected. The algorithm is
simply to use the lowest transmit power level p, such that
the destination is reachable by using a power level no
larger than p. This algorithm is executed at the source and
at every intermediate node along the route from the source
to the destination for every packet. The route resulting by
running this algorithm in a typical clustered network is
illustrated in Fig. 3. The network has three levels of clus-
tering corresponding to power levels of 1 mW, 10 mW and
100 mW, the whole network being the 100 mW cluster. To
get from the source node S to the destination D, a power
level of 100 mW is used until the packet gets to the 10 mW
cluster to which the destination belongs. Then 10 mW is
used until the 1 mW cluster to which the destination be-
longs is reached, and finally a 1 mW hop gets the packet
to the destination. Thus, transmit power control leads to
automatic clustering in the network.

A. Clusterpow architecture

We now describe the architectural design to implement
the above algorithm in a simple way, and to integrate it
into the network stack as a network layer protocol. The ar-
chitecture of Clusterpow involves running multiple rout-
ing daemons, one corresponding to each power level Pi

that is available. These routing daemons build their own
separate routing tables RTPi

by communicating with their
peers at other nodes, using hello packets transmitted at
power level Pi. This idea of parallel modularity at the
network layer is illustrated in Fig. 5. The next hop in
Clusterpow is determined by consulting the lowest power
routing table in which the destination is reachable. That
is, for every destination D, the entry in kernel routing ta-
ble is copied from the lowest power routing table in which
D is reachable, i.e., has a finite metric. The kernel routing
table has a transmit power field for every entry which in-
dicates the power to be used when routing packets for that

D Inf D Inf N1D

Node S
D 3N1 100 mW

3

1 mW Routing Table 10 mW Routing Table 100 mW Routing Table

Dest NextHop Metric

Kernel IP Routing Table

TxPower

MetricDest NextHop MetricDest NextHop MetricDest NextHop

D Inf D Inf N2D

Node N1
D 3N2 100 mW

1 mW Routing Table 10 mW Routing Table 100 mW Routing Table

Dest NextHop Metric

Kernel IP Routing Table

TxPower

MetricDest NextHop MetricDest NextHop MetricDest NextHop

3

D Inf D N3 2 DD

Node N2
D 2N3 10 mW

1

1 mW Routing Table 10 mW Routing Table 100 mW Routing Table

Dest NextHop Metric

Kernel IP Routing Table

TxPower

MetricDest NextHop MetricDest NextHop MetricDest NextHop

DD 1 D D 1 DD

Node N3
D 1D 1 mW

1

1 mW Routing Table 10 mW Routing Table 100 mW Routing Table

Dest NextHop Metric

Kernel IP Routing Table

TxPower

MetricDest NextHop MetricDest NextHop MetricDest NextHop

Fig. 4. Routing tables for all power levels, and the kernel IP routing
table, at all the nodes in the network of Fig. 3

destination.
The user space routing tables at each power level and

the kernel IP routing table at each of the nodes corre-
sponding to the network in Fig. 3 is shown in Fig. 4, and
the routing procedure is described in detail below. At node
S, the destination D appears (i.e., has a finite metric) only
in the 100 mW routing table with N1 as the next hop. Thus
this entry is copied in the kernel IP routing table and used
for routing. The situation is similar for N1, since the des-
tination appears only in the 100 mW routing table with N2
as the next hop. At N2 however the lowest power level at
which D is reachable is 10 mW. So this is used for routing
and the packet is sent to N3, which has D in its 1 mW rout-
ing table. So the final hop of the packet is at 1 mW. Thus,
this architecture provides a simple way to implement the
Clusterpow algorithm.

The architectural design of Clusterpow makes certain
assumptions. We assume a small number of discrete trans-
mit power levels in our design. This is currently true of
the only off-the-shelf wireless network interface cards ca-
pable of transmit power control: the Cisco Aironet 350

Nexthop Metric TxpowerDest

RD RDPmax... ...Pmin Py RD PzRDPxRD

APPLICATIONS (DATA)

user space

kernel space

TRANSPORT LAYER

CLUSTERPOW AGENT

NETWORK LAYER

CHANNEL

DATA LINK + MAC

PHYSICAL

Port demultiplexing

Fig. 5. Architectural design for Clusterpow.

cards, which allow the transmit power level to be set to
one of 1, 5, 20, 30, 50 and 100 mW. In the event of more
vendors providing different cards having different trans-
mit ranges and power levels, there needs to be a calibra-
tion equivalence of power levels between vendors, to en-
able the use of diverse hardware in a network. Standard-
ization is required for interoperability.

We also assume that the hardware allows per packet
power control. Cisco cards comply with this assump-
tion only partially, as there is an inexplicably large power
change latency. The latency when measured in the driver
was found to be 6ms, but even after the power level has
been changed on the card, it takes some time to resume
transmission at full throttle. When we estimated the la-
tency of a power change at the network layer by moni-
toring ping traffic on the network, it was close to 100ms.
However, power control is quite common in CDMA net-
works and is done 800 times a second. Thus, the current
electronics is certainly capable of fast power changes, but
the firmware in the Cisco cards, unfortunately, is written
so that it requires a reset for every power level change. To
reduce this unnecessarily wasteful switch-over latency we
use a scheduling policy. The policy is to serve all the pack-
ets of current power level that are queued before changing
the power level. In other words, bunch queued packets to-
gether according to power levels before serving them. It
can be shown that this reduces the number of power level
changes required [29].

B. Clusterpow Properties

The Clusterpow power control protocol has the follow-
ing properties:

1) Clusterpow provides implicit, adaptive, and dis-
tributed clustering based on transmit power. Clus-

S D

Y
X

Path P

Fig. 6. Suppose, there is a loop on the path P from S to D. Dashed
lines indicate possibly multiple hops on the path.

tering is implicit because there are no cluster-head
or gateway nodes. It is dynamic and distributed, be-
cause it is integrated with a routing protocol which
has these properties. The clusters are determined by
reachability at a given power level, and the hierar-
chy of clustering could be as deep as the number of
power levels.

2) The routes discovered consist of a non-increasing
sequence of transmit power levels. This is because
when a particular power level p is used, the desti-
nation is present in the routing table corresponding
to p and there exists a path of power level at least
p from the current node to the destination. Thus
further ‘downstream’ there will never be a need of
using a higher transmit power.

3) COMPOW is a special case of Clusterpow. If the
network is homogeneous, Clusterpow will use a
common power level throughout the network.

4) Clusterpow can be used with any routing proto-
col. In the case of a proactive routing protocol
(e.g. DSDV [30]), all the routing tables at differ-
ent power levels are maintained through hello pack-
ets and the kernel routing table is composed using
them. For a reactive or on-demand routing proto-
col like AODV [31], route discovery requests are
sent out at all the power levels available. The low-
est power level which results in a successful route
discovery is used for routing the packet. Some sav-
ings are possible for on-demand routing protocols
by caching the routes in a user space route cache,
and generating route requests for a destination only
when it does not have an entry in the cache.

5) Clusterpow is loop free. The kernel routing table
in Clusterpow is a composite of the individual rout-
ing tables at different power levels. It is possible
that this interaction between routing protocols could
lead to packets getting into infinite loops. However
this is not the case, as we prove in the theorem be-
low.

Theorem 1: The Clusterpow power control protocol
provides loop free routes.

Proof: By contradiction:

Suppose there is a loop as shown in Fig. 6, a packet on
its way from node S to node D follows the path S-X-Y-
X. . . , that is, it comes to back to node X after traversing
it once. We show that this violates one of the follow-
ing facts or properties, and hence provides a contradiction.

Property i) The underlying routing protocol is loop free.
Property ii) Clusterpow chooses routes such that subse-
quent hops use a sequence of non-increasing power levels.
Property iii) Routes do not change if the network
conditions do not change. Note that the specification of
the routes at any node, now includes both the next hop as
well as the power used to reach the next hop.

Now there are two cases to consider to seek a contra-
diction.

Case i) The path P has all the hops of same power
level. This implies that the underlying routing protocol
has loops. This violates Property i) and provides a
contradiction.

Case ii) If the hops on path P are not of the same power
level then they have to be of decreasing power levels. This
is ensured by the design of the Clusterpow algorithm. But
if the packet follows the path P as shown and comes back
to X then, by Property iii), it has to follow the same path
from X to Y which it followed previously. This involves
a higher power level hop and violates Property ii), i.e.,
the hops in Clusterpow use a sequence of non-increasing
power levels. Thus we obtain a contradiction and this
completes the proof.

C. Clusterpow and QoS

Clusterpow provides a natural architecture for imple-
menting Quality of Service. Multiple routing daemons
running in parallel provide lot of information about dif-
ferent routing options which can be exploited in several
ways. Alternate routing paths using different power levels
can be used to provide QoS. Clusterpow can thus support
a DiffServ type of QoS solution. Packets having lower la-
tency requirements can use higher power levels to reduce
hop count.

Thus, in the scenario of Fig. 3, higher priority data
packets from node S can get to the destination D in only
3 hops of 100 mW each. Normal packets will have to fol-
low the route determined by the protocol which consist of
4 hops. Thus Clusterpow provides an elegant mechanism
for cross layer optimization and QoS without disturbing
the architectural modularity of the network stack.

Nexthop Metric TxpowerDest

NETWORK CARD

RD RDPmax

SCHEDULER

DEVICE DRIVER

... ...

TRANSPORT LAYER

change_power() per packet

set skb−>txpower for broadcast packets

NETWORK LAYER set skb−>txpower for DATA packets

Pmin Py RD PzRDPxRD

CLUSTERPOW AGENT APPLICATIONS (DATA)

user space

kernel space

Fig. 7. The Clusterpow Software Architecture.

D. Clusterpow Implementation and Software Architec-
ture

We now describe the software architecture (see Fig. 7)
and the implementation details of Clusterpow in the Linux
kernel. The first task is to run multiple routing daemons
at different power levels. In Linux, route discovery and
maintenance is done by user space programs called rout-
ing daemons, and the actual packet forwarding is done by
consulting the kernel IP routing table, which is populated
by the routing daemons. [32] provides more details. Thus
running multiple routing daemons simply involves start-
ing many of these routing daemons, one for each power
level, on pre-assigned ports. They use UDP packets for
communication, thus transport layer port demultiplexing
ensures that a routing daemon at a particular power level
communicates only to its peers at other nodes. The par-
ticular routing protocol we use is DSDV [30], which was
also implemented.

Once we have the routing tables at all the power levels,
the kernel routing table is constructed by an intelligent
composition of these routing tables. The entry for a des-
tination that is copied to the kernel routing table comes
from the lowest power routing table in which it appears,
i.e., has a finite metric. This composition is done by an
agent running in user space, called the Clusterpow agent.
It gathers data from all the routing daemons through pipes,
and then updates the kernel routing table, the routing dae-
mons themselves do not modify the kernel routing table
directly.

In Clusterpow, the transmit power used for a packet de-
pends on the destination of the packet and thus can be
decided only when the packet passes through the IP rout-
ing module in the network stack. This necessitates the

addition of an extra field txpower, in the kernel routing
table. The IP forwarding code of the Linux IP stack was
modified so that it puts the transmit power also in the
packet, along with other routing information such as the
next hop. The IP forwarding code copies the txpower
from the kernel routing table to skb→txpower, where
skb is the packet data structure in the Linux kernel. This is
done for all application or DATA packets. txpower field
had to be added to skb because the decision about the
transmit power of a packet is made in the network layer,
but the transmit power is set only in the network device
driver. skb data structure is the most natural mechanism
to carry information between the network layer and the
device driver. Note that the packets going out on the air
do not contain this field.

Broadcast packets (e.g hello packets from DSDV) how-
ever, do not consult the routing table. Hence the transmit
power for such packets has to be specified by the appli-
cation sending these packets. For hello packets this ap-
plication will be the routing daemons running at different
power levels. We provided such a mechanism by modify-
ing the sendto() system call, so that the transmit power
can be specified by adding extra flags. Using extra flags
to specify the transmit power preserves the syntax of the
system call and does not break existing applications.

The network device driver was modified so that it can
read the transmit power from the skb and set it on the
card. We have used the Cisco Aironet 350 cards in our
implementation, which are the only commercially off-the
shelf available cards supporting multiple transmit power
levels.

Another modification was needed in the routing table
administration mechanism so that the transmit power can
be specified when adding a routing table entry to the ker-
nel. We modified the SIOCADDRT ioctl so that the trans-
mit power can be specified using extra flags. This mecha-
nism is used by the Clusterpow agent.

Finally, the scheduler (see Sec. II-A) to reduce power
switch-over latencies has been implemented in the generic
device queues below the IP layer.

The protocol has been implemented in the 2.4.18 Linux
kernel and its correct functioning has been tested on our
ad hoc networking testbed.

III. RECURSIVE LOOKUP SCHEMES

In this section we explore improvements over the Clus-
terpow protocol using schemes involving recursive lookup
of routing tables, leading to the development of the Tun-
nelled Clusterpow protocol.

N1

N3

N2

100 mW

100 mW

10 mW

1 m
W

D

1 mW cluster
10 mW cluster

10 mW
S

N0
1 mW

Fig. 8. Improving the Clusterpow protocol. The 100 mW hop from S
to N1 can be replaced by two hops of 1 mW and 10 mW each.

N1
S DN10 10 mW10 mW

1 mW

Fig. 9. The recursive look up scheme is not loop free.

A. Recursive look up of routing tables

We have noted before in Sec. I and in [1], [2], that
numerous low power hops are preferable to fewer high
power hops, for optimizing network capacity. In light of
this, it is advantageous to replace the first 100 mW hop in
Fig. 3 by two shorter hops of 1 mW and 10 mW respec-
tively, as shown in Fig. 8. It seems possible to achieve this
by a more sophisticated composition of the routing tables
at various power levels to form the kernel routing table.
The scheme we consider is to recursively lookup the next
hop in lower power level routing tables, until the lowest
power level is reached at which the next hop is reachable.
Thus in Fig. 8, the next hop N1 at node S is looked up in
lower power routing tables to find that it is reachable at
10 mW through N0, which in turn is reachable at 1 mW.
So ultimately the packet is given to N0 at 1 mW. This
same algorithm is carried out at N0 when the packet gets
there, and at each node on the path. Thus we seem to have
achieved a finer optimization by recursive lookup of indi-
vidual routing tables at different power levels to compose
the kernel routing table.

However, the recursive lookup scheme presented above
is not loop free. The counterexample in Fig. 9 demon-
strates a routing loop, if the recursive look up scheme is
used. S needs to send a packet to D. It figures out that
the next hop is the node N10 in the 10 mW routing table.
Recursive lookup for N10 reveals that it is reachable at 1
mW and the next hop is N1. Thus S forwards the packet

N10 D DATA D DATA

N10 10 mW

1 mW

N1 S D10 mW

N2

N3

Fig. 10. Tunnelled Clusterpow protocol resolves the routing loop of
the network in Fig. 9. The headers added to the packet, as it travels
along the route, are also shown.

to N1 at 1 mW. N1 runs the algorithm again and finds that
the lowest power level at which D is reachable is 10 mW
and the next hop is S. S itself is reachable at 1 mW, so
the packet is handed over back to node S and we have an
infinite loop. Note that this loop is not due to the count-
ing to infinity problem of distance vector protocols, but a
consequence of the recursive lookup algorithm.

B. The Tunnelled Clusterpow Protocol

The recursive lookup scheme described above can be
made loop free if we tunnel the packet to next hop using
lower power levels instead of sending the packet directly.
One mechanism to achieve this is by using IP in IP en-
capsulation. Thus, while doing a recursive lookup for the
next-hop we also recursively encapsulate the packet with
the address of the node for which the recursive lookup is
being done. The decapsulation is also done recursively
when the packet reaches the corresponding next hop. We
call this the Tunnelled Clusterpow protocol.

As shown in Fig. 10, Tunnelled Clusterpow does re-
solve the loop in our example of Fig. 9. Now when node S
forwards the packet to N1, it encapsulates the packet with
the address of N10. Thus N1 does a routing lookup not
for the destination D but for node N10. It finds that N10
is reachable at 1 mW through the path N2, N3 . . . , and it
forwards the packet to N2 at 1 mW. When the packet gets
to N10 it decapsulates the packet and then sends it to D at
10 mW. Thus there is no routing loop in this example. We
now provide a proof that Tunnelled Clusterpow is indeed
loop free.

Theorem 2: The Tunnelled Clusterpow power control
protocol provides loop free routes.

Proof: By Induction on the number of transmit
power levels.

Assumption: The underlying routing protocol used is
loop free.

Let there be t transmit power levels indexed from 1
through t such that power level t is the lowest. We pro-

vide a proof by induction on the number of transmit power
levels t.

The base case for t = 1 is obvious, since that reduces
to a single routing daemon, and the underlying routing
protocol is loop free.

Now assume that the protocol provides loop free routes
when t power levels are in use. This is the induction hy-
pothesis. Now we add the t + 1 th power level. Any
hops previously using a lower indexed (i.e., higher val-
ued) transmit power level, may now be replaced by multi-
ple hops using the t+1 th power level only. Note that any
hop previously using a power level m, where 1 ≤ m ≤ t,
can not be subdivided now to use a hop of power level
n, where m ≤ n ≤ t, since if such a subdivision were
possible, it would have occurred when power level n was
added. Thus, a possible subdivision of any hop, upon the
addition of the t + 1 th power level, may consist of hops
using the t + 1 th power level only. This cannot introduce
any loops, since the t + 1 th power level routing table is
loop free. This completes the proof.

C. Architecture and Implementation issues

The software architecture of Tunnelled Clusterpow is
similar to that of Clusterpow. However the implementa-
tion itself is more complicated than Clusterpow because
of the recursive encapsulation and decapsulation involved.
The tunnelling facility already existing in the Linux oper-
ating system cannot be used, since it provides static tun-
nelling. That is, the endpoints of the tunnel need to be
known beforehand, and the tunnel has to be configured
before it can be used. What we need is dynamic per
packet tunneling with possibly multiple levels of encap-
sulation. For this dynamic multi-level tunneling, a flag
is also needed in the IP header itself to indicate if the
packet is encapsulated. Thus, there is a substantial mod-
ification of the kernel routing code involved in Tunnelled
Clusterpow implementation. The level of encapsulation
can be as much as the number of power levels and each
encapsulation adds an IP header of 20 bytes. In addi-
tion to the routing message overhead, the encapsulation-
decapsulation and multiple routing table lookups for every
packet is probably lot of processing for a router. Because
of these issues, the implementation of this protocol has
not been completed yet. Nevertheless it provides an in-
teresting demonstration of schemes that are possible with
a sophisticated composition of various individual routing
tables built at different power levels.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600
Y

 d
is

ta
n
c
e
 i
n
 m

e
te

rs

X distance in meters

500 nodes randomly placed on a 500x500 m area

< 20 mW
20−50 mW

50−100 mW

Fig. 11. The graph of optimal power routes with a transmit power
required for the link as the cost.

IV. THE MINPOW ROUTING AND POWER CONTROL

PROTOCOL

MINPOW minimizes the total transmit power on a
route. It is essentially distributed Bellman-Ford algorithm
with sequence numbers, and transmit power as the link
cost instead of the hop count normally used. Any short-
est path algorithm can be used. The basic idea behind
MINPOW is not new, and has been suggested before in
different forms in [6], [7], [8], [9]. Various metrics like
signal strength, transmit power cost of the link, node’s re-
maining battery life or variance in battery life among all
nodes, have been proposed. These approaches generally
require substantial physical layer support, and the lack of
standardization for cross layer interaction has prevented
an implementation of such schemes in the real testbed.
We provide an implementation of MINPOW at the net-
work layer using only hello packets, and no support from
the physical layer for estimating cost. Our method works
for both proactive as well as reactive routing protocols.

More thought can be given on estimating or measuring
the link cost. The exact transmit power required to tra-
verse the link can be obtained in two ways.

The transmit power can be calculated by measuring the
distance between the two nodes on the link and using a
decay model for the path loss. One of the common models
assumes that path loss in the medium follows an inverse
α-th law with α ≥ 2, i.e., the received power at a distance
ρ from a transmitter using a power level Ptrans is cPtrans

ρα ,
where c is a constant. Suppose that in order to receive a

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

Y
 d

is
ta

n
c
e

 i
n

 m
e

te
rs

X distance in meters

900 nodes randomly place on a 500x500 area

< 20 mW

20−50 mW

50−100 mW

Fig. 12. The graph of optimal routes for 900 nodes. All other simu-
lation parameters were the same as in Fig. 11.

packet the received power level must be at least γ, i.e.,
cPtrans

ρα ≥ γ. Then the needed transmitter power level is at

least γρα

c
. This can be taken to be the link cost. Thus, if

a route from a source to a destination consists of h hops,
of distances ρi, i = 1, 2, . . . , h, then the power cost of the
route is γ

c

∑h
i=1

ρα
i . We can ignore the scaling γ

c
and just

fix the power cost of the route to be
∑h

i=1
ρα

i .

A simulation was performed to discover the optimal
routes using this methodology for estimating link cost,
with α = 2, for 500 nodes on a 500x500 m area. The
graph formed of edges which lie along some power opti-
mal path is shown in Fig. 11. The links in the graph have
been coded according to the transmit power requirement.
This envisages a practical scenario where the hardware
is capable of discrete power setting only. This graph is
planar and tends to use smaller power hops as the node
density increases. Indeed Fig. 12, which is the same sim-
ulation as in Fig. 11 but for 900 nodes, shows that most
of the hops are now 20 mW hops, the lowest power level
available in this simulation. It was proved in [2] that such
a graph could always be chosen to be planar for α ≥ 2

and for α > 2 it can be chosen to be a subgraph of the one
for α = 2.

However, there are a few problems in estimating the
link cost in this manner. The first difficulty is that distance
information is not always available. For this to be done in
a distributed manner, the nodes have to be equipped with
location detection equipment like GPS. It should also be
noted that just the geographical co-ordinates can be de-

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600
Y

 d
is

ta
n
c
e
 i
n
 m

e
te

rs

X distance in meters

500 nodes randomly placed on a 500x500 m area

20 mW

50 mW

 100 mW

Fig. 13. The graph of optimal power routes is no longer planar if the
cost is discrete.

ceptive in calculating the transmit power cost for the link,
because they do not take into account obstacles in the en-
vironment and shadowing in the channel. For example,
the presence of a wall between two nodes may increase
the transmit power cost of a link, even though geograph-
ical information may suggest a very low cost. Another
problem using this methodology for estimating cost has
to do with the accuracy of the path loss model. The pa-
rameter α is strongly environment dependent, and typi-
cally varies between 2 and 4 when going from an indoor
building environment to an open outdoor environment.

A second way to estimate the exact link cost is by di-
rect measurement at the physical layer. Per packet signal
strength measurements, if available, can be used to esti-
mate the power required for a successful transmission on
that link. However signal strength measurements are hard-
ware dependent. The measurement of the signal strength
at the receiver does not give a proper estimate of the
power the transmitter might have used for that transmis-
sion, since it might be using a different hardware. Another
problem with signal strength measurements is their wide
fluctuation with the channel state. There are also practical
difficulties. There are hardly any drivers which support
per packet signal strength measurements and expose that
information to user-space programs.

We use neither of the two approaches, the first because
the exact propagation model is unknown and distance in-
formation is not always available or useful, and the second
because the required physical layer support is not avail-
able or standardized. We should also use the fact that

Nexthop Metric TxpowerDest

NETWORK CARD

SCHEDULER

DEVICE DRIVER

TRANSPORT LAYER

change_power() per packet

NETWORK LAYER set skb−>txpower for DATA packets

user space

kernel space

MINPOW DAEMON

APPLICATIONS (DATA)

1 m
W

50 m
W

10 m
W

BeaconsHello packets at Max power level

set skb−>txpower for broadcast (hello) packets

Fig. 14. The MINPOW Software Architecture.

typically there are only a few discrete power level set-
ting available, e.g the Cisco Aironet 350 cards have only
6 distinct transmit power levels. Thus we should use a
discretized link cost, rather than using the exact value of
the transmit power required for successful transmission.
The link cost used should be rounded above to the nearest
transmission power level that the hardware is capable of.
This is the real optimal solution as this is the power ulti-
mately used for transmission. The simulation of Fig. 11
was repeated with the cost now discretized. The graph
of optimal power routes for this case is shown in Fig. 13.
This graph is no longer planar but the clustering of nodes
is more prominent.

A. MINPOW implementation

We now provide an implementation of MINPOW which
uses a discretized transmit power cost as discussed above.
We have modified our DSDV implementation to imple-
ment MINPOW. To estimate the link cost every node now
sends hello packets at each of the transmit power levels
available, all of them having the same sequence number.
Only the hello packets at the maximum power level con-
tain the routing updates. The rest are only beacons which
contain the address of the originator, the power level at
which it was transmitted, and the sequence number of the
corresponding maximum power level hello packet. The
neighbors receiving the hello packets set the link cost to
be the transmit power value in the lowest power beacon
that they successfully received. This link cost is then used
in the distance vector algorithm for computing the routes.
The software architecture for this MINPOW implementa-
tion is illustrated in Fig. 14.

The method suggested above works for both proactive
as well as reactive routing protocols. Most reactive rout-
ing protocols, e.g. AODV [31], use beacons for sensing

link status, i.e., to check if a neighbor has moved away.
These beacons can be sent at all available power levels
in turn, and can be used to estimate the link cost as de-
scribed above. The route requests itself are sent at maxi-
mum power, but the nodes use the transmit power as the
cost, and also specify the transmit power to be used for
the next hop.

Our implementation does not need any measurement
support from the physical layer. We do need an extra tx-
power field in the kernel routing table, and also per packet
power change support from the network driver. All these
features were also needed for Clusterpow. Thus the MIN-
POW implementation is primarily in user space, with only
the absolutely essential modifications in the kernel and the
device driver to support per packet transmit power switch-
ing.

B. MINPOW properties

To summarize, the MINPOW protocol has the follow-
ing properties:

1) It provides a globally optimal solution with respect
to total transmit power.

2) MINPOW provides loop free routes. This is true be-
cause distributed Bellman-Ford with sequence num-
bers is loop free, provided the link cost is non-
negative, which is true in our case.

3) No measurement support is needed from the phys-
ical layer. Neither is information needed regarding
node locations. The cost estimation is done through
hello packets only at the network layer.

4) The suggested architecture works well for both
proactive (table-driven), as well as reactive (on-
demand) routing protocols.

5) QoS support is not possible in MINPOW, as it is in
the Clusterpow architecture.

V. EXPERIMENTATION

The correctness for our MINPOW and Clusterpow im-
plementations was tested in few simple scenarios on our
ad hoc networking testbed. In one of the tests, we started
with 5 nodes co-located on a desk, using 100 mW by de-
fault, as shown in Fig. 15(a). When Clusterpow was al-
lowed to run, the kernel routing tables at all the 5 nodes
were built, such that the txpower field for all the entries
was 1 mW, and as expected, all the nodes were now using
1 mW , as shown in Fig. 15(b). Same result was obtained
for MINPOW as well. Now one of the nodes N5, was
moved away from the others so that it could be reached
only at 100 mW, as seen in Fig. 15(c). The routing table
entry for this outlying node N5, at nodes N1-N4, was now

N1 N2
N3

N4

N5

(a) Co-located
nodes at 100 mW.

N1 N2
N3

N4

N5

(b) 1 mW is
enough.

N1 N2
N3

N4

N5

(c) A clustered
network.

Fig. 15. Experimentation.

automatically modified to use a power level of 100 mW,
while N5 now had 100 mW in its routing table for all the
other nodes. The nodes of the 1 mW cluster used 1 mW
for intra cluster communication. MINPOW resulted in the
same result for this particular scenario.

We now elaborate on some problems we faced during
our efforts for more extensive experimentation.

1) Even though, the Cisco Aironet 350 cards that we
are using, support multiple power levels, they are
not designed for per packet power switching. As
we noted in Sec. II-A, the firmware automatically
forces a reset when the power level is changed.
Apart from the latency, frequent power changes
causes these cards to crash temporarily, every now
and then. Thus, any experimentation with a signifi-
cant amount of traffic, was rendered impossible.

2) Formation of effective multi-hop topologies proved
to be difficult, due to a subtlety in the 802.11 MAC
protocol. The interference range in these cards
is approximately twice that of the communication
range. That means that if any transmission within a
radius r can be received successfully, then the car-
rier can be sensed for any ongoing transmission in
a radius 2r. This issue is considered in [33] to sug-
gest a MAC protocol using power control. Since an
802.11 transmitter does not transmit when it senses
the carrier, the expected capacity improvements of
using low power levels cannot be ascertained in a
small testbed consisting of a few tens of nodes with
a networks radius of 3-4 hops; the carrier silences
most of the nodes in the network.

VI. CONCLUDING REMARKS

We present solutions to the problems of power con-
trol and clustering in non-homogeneous networks. Our
approach provides an implicit and dynamic clustering of

the network using power control. Unlike most other ap-
proaches, there are no cluster-head or gateway nodes. The
clustered structure of the network is automatically mani-
fested in the way routing is done.

The protocol details of Clusterpow, Tunnelled Cluster-
pow, and MINPOW are presented along with the software
architecture and the implementation details in the Linux
kernel. Clusterpow provides a natural architecture for im-
plementing DiffServ type QoS, where power can be traded
off for latency. MINPOW provides a globally optimal
routing solution with respect to transmit power. MIN-
POW has been implemented at the network layer using
hello packets only, without any support from the physical
layer. The architecture works for any routing protocol.

REFERENCES

[1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE Transactions on Information Theory, vol. IT-46, pp. 388–
404, 2000.

[2] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Ku-
mar, “Power control in ad-hoc networks: Theory, architecture,
algorithm and implementation of the COMPOW protocol,” in
European Wireless Conference, 2002.

[3] R. Ramanathan and R. Rosales-Hain, “Topology control of mul-
tihop wireless networks using transmit power adjustment,” in
Proceedings of INFOCOM, 2000, pp. 404–413.

[4] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed
topology control for power efficient operation in multihop wire-
less ad hoc networks,” in Proceedings of INFOCOM, 2001,
pp. 1388–1397.

[5] T. A. ElBatt, S. V. Krishnamurthy, D. Connors, and S. Dao,
“Power management for throughput enhancement in wireless ad-
hoc networks,” in IEEE International Conference on Communi-
cations, 2000, pp. 1506–1513.

[6] S. Singh, M. Woo, and C. S. Raghavendra, “Power aware routing
in mobile ad hoc networks,” in Proceedings of MOBICOM, 1998,
pp. 181–190.

[7] M. W. Subbarao, “Dynamic power-conscious routing for manets:
An initial approach,” in IEEE Vehicular Technology Conference,
1999, pp. 1232–1237.

[8] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in
wireless ad-hoc networks,” in Proceedings of the Seventh Annual
International Conference on Mobile Computing and Networking,
Rome, Italy, ACM Press, July 2001, pp. 97–107.

[9] R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi, “Signal sta-
bility based adaptive routing (SSA) for ad-hoc mobile networks,”
in IEEE Personal Communications, 1997.

[10] J. P. Monks, V. Bhargavan, and W.-M. Hwu, “A power controlled
multiple access protocol for wireless packet networks,” in Pro-
ceedings of INFOCOM, 2001, pp. 219–228.

[11] S. Singh and C. S. Raghavendra, “Power efficient MAC protocol
for multihop radio networks,” in The Ninth IEEE International
Symposium on Personal, Indoor and Mobile Radio Communica-
tions, 1998, pp. 153–157.

[12] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE Journal on Selected Areas in Communications,
vol. 15, pp. 1265–1275, September 1997.

[13] M. Joa-Ng and I.-T. Lu, “A GPS-based peer-to-peer hierarchi-
cal link state routing for mobile ad hoc networks,” in 51st IEEE
Vehicular Technology Conference, 2000.

[14] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan, “A
cluster-based approach for routing in dynamic networks,” in SIG-
COMM Computer Communications Review (CCR), 1997.

[15] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A weighted
clustering algorithm for mobile ad hoc networks,” Journal of
Cluster Computing (Special Issue on Mobile Ad hoc Networks),
vol. 5, pp. 193–204, April 2002.

[16] S. Basagni, “Distributed clustering for ad hoc networks,” in Inter-
national Symposium on Parallel Architectures, Algorithms, and
Networks.

[17] J. T. Tsai and M. Gerla, “Multicluster, mobile, multimedia ra-
dio network,” ACM/Kluwer Journal of Wireless Networks, vol. 1,
no. 3, pp. 255–65, 1995.

[18] T. J. Kwon and M. Gerla, “Clustering with power control,” in
IEEE MILCOM, 99.

[19] Z. Haas, “A new routing protocol for the reconfigurable wireless
networks,” in ICUPC, 97.

[20] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-min
D-cluster formation in wireless ad hoc networks,” in IEEE IN-
FOCOM, 2000, pp. 32–41.

[21] R. Krishnan, R. Ramanathan, and M. Steenstrup, “Optimization
algorithms for large self-structuring networks,” in INFOCOM:
The Conference on Computer Communications, joint conference
of the IEEE Computer and Communications Societies, 1999.

[22] R. Sivakumar, B. Das, and V. Bharghavan, “An improved spine-
based infrastructure for routing in ad hoc networks,” in IEEE
Symposium on Computers and Communications, 1998.

[23] U. C. Kozat, G. Kondylis, B. Ryu, and M. K. Marina, “Virtual
dynamic backbone for mobile ad hoc networks,” in IEEE Inter-
national Conference on Communications, 2001.

[24] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for
routing in very large networks,” in Symposium proceedings on
Communications architectures and protocols, ACM Press, 1988,
pp. 35–42.

[25] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen,
“Scalable routing strategies for ad hoc wireless networks,” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 8,
pp. 1369–1379, 1999.

[26] IEEE 802 LAN/MAN Standards Committee. “Wireless LAN
medium access control (MAC) and physical layer (PHY) spec-
ifications,”,”. IEEE Standard 802.11, 1999 edition, 1999.

[27] J. Deng and Z. Haas, “Dual busy tone multiple access (DBTMA):
A new medium access control for packet radio networks,” in
IEEE ICUPC, 1998.

[28] R. Rozovsky and P. R. Kumar, “Seedex: A mac protocol for ad
hoc networks,” in Proceedings of The ACM Symposium on Mo-
bile Ad Hoc Networking and Computing, MOBIHOC, 2001.

[29] J. R. Perkins and P. R. Kumar, “Stable distributed real-time
scheduling of flexible manufacturing/assembly/disassembly sys-
tems,” IEEE Transactions on Automatic Control, vol. 10,
pp. 139–148, 1989.

[30] C. E. Perkins and P. R. Bhagwat, “Highly dynamic destination-
sequenced distance vector routing (DSDV) for mobile comput-
ers,” in Proceedings of ACM SIGCOMM, 1994, pp. 234–244.

[31] C. E. Perkins, E. M. Royer, and S. Das, “Ad hoc on demand dis-
tance vector routing,” in Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, 1999, pp. 90–
100.

[32] V. Kawadia, Y. Zhang, and B. Gupta, “System services for im-
plementing ad hoc routing protocols,” in International Workshop
on Ad Hoc Networking, 2002.

[33] E.-S. Jung and N. H. Vaidya, “A power control MAC protocol for
ad-hoc networks,” in ACM MOBICOM, 2002.

