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Abstract— With a view on improving user perceived performance on
networks supporting elastic flows, e.g., multimedia/data file transfers, we
identify the key properties that an online dynamic bandwidth allocation
policy should have. We then propose a family of bandwidth allocation
criteria which depends on the residual work of on-going transfers. Anal-
ysis and simulations show that allocating bandwidth in this fashion can
improve the user perceived average bit transmission delay (BTD), i.e.,
delay/flow size, by up to 70% at 80% traffic load over traditional ap-
proaches. A simple implementation based upon TCP Reno, exemplifies
how one might approach practically realizing such gains. Further studies
on simple network topologies show that as the penetration of the proposed
transport mechanism increases, users will have the proper incentives to
upgrade from TCP Reno, and that the overall performance is better for all
users once the penetration exceeds 20%.

I. INTRODUCTION

R
ECENTLY much attention has been paid to characterizing
how network bandwidth is shared among data transfers,

i.e., TCP mediated transfers of best-effort flows. This work
has, for the most part, focused on the character of the ‘equi-
librium’, e.g., fairness, reached by various network/user adap-
tation mechanisms when a fixed set of flows share the network,
e.g., [1], [2], [3], [4]. It is however unclear how ‘fair’ band-
width allocations impact the user perceived performance in a
dynamic setting where users come and go. The work in [5], [6],
[7], [8], [9] leads the way in this direction focusing on stability
and performance in the dynamic regime. Our aim in this paper
is to investigate how one might enhance, if not optimize, aver-
age user perceived performance from the ground up through a
new class of transport mechanisms.

Users transferring data files are typically said to be elastic
in the sense that they have a wide tolerance to changes in the
transmission rate throughout the transfer. A reasonable perfor-
mance measure for such elastic users/flows may be the time it
takes to complete the transfer, particularly, but not exclusively,
when interactivity is involved, e.g., web browsing. Transfer de-
lays alone are not necessarily representative of user satisfaction
as there may be a wide disparity in the size of ongoing transfers
1. In fact, some transfers may and should be expected to take
longer to complete, e.g., multimedia rich documents or bulk
backups, and thus the sensitivity to delay of such users is likely
to be diminishing in file size. In this case a natural quality of
service metric would be the Bit Transmission Delay (BTD)2,
i.e., delay/file size. Note that the reciprocal of a flow’s BTD
is the user perceived throughput. Thus minimizing the average
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1Studies show that the files being transferred on the Internet exhibit great
variability in size, see e.g., [10].

2BTD is similar to ‘slow-down’ used for scheduling problems, e.g., [11], [12].

user perceived BTD is coupled with increasing the average per-
ceived throughput. Other performance metrics could and may
be considered in the future. We will however focus on the aver-
age BTD as a reasonable proxy for user perceived performance.

Upon initiating a file transfer the amount to be sent is typi-
cally known on the sender side, e.g., static web content. This,
however, is currently ignored by transport and network level
mechanisms which determine how bandwidth is shared among
ongoing elastic flows. In this paper we take a novel approach
by investigating how one might employ the file size information
to optimize the average BTD users will see. Recognizing that
ease of deployment would be an issue we propose mechanisms
that are akin to TCP, in that they are decentralized, robust, and
likely scale fairly well. We will show that dynamic bandwidth
allocations that depend on the remaining volume of data to be
sent can significantly enhance the average BTD seen by elastic
flows.

The rest of the paper is organized as follows. A formal de-
scription of the dynamic bandwidth allocation problem is given
in the next section. In xIII we consider a dynamic set of flows
sharing a single bottleneck link and derive and compare policies
that enhance the average BTD over the commonly used ‘fair
share’. Then, in xIV, we investigate the interaction among elas-
tic flows on various routes and extend our qualitative findings to
general networks, by considering a prototypical linear network
in detail. Based on these insights we propose and discuss a gen-
eralized size dependent bandwidth allocation criterion, SABA,
in xV. Fluid-flow simulations are presented in xVI to exhibit
the potential performance gains achieved by using SABA over
traditional fairness criteria. In xVII we briefly discuss a proof
of concept implementation, i.e., a transport mechanism, which
realizes SABA, called SAReno. Packet level simulations of the
proposed transport mechanism are then conducted showing the
gains achieved by SAReno over Reno. Various other design is-
sues are discussed including the performance in networks sup-
porting heterogeneous transport mechanisms. Conclusions and
final remarks are given in xVIII.

II. PROBLEM DESCRIPTION AND RELATED WORK

We consider a network consisting of a set of links L where
link l 2 L has capacity cl bps. Each file transfer j 2 J is mod-
eled as a fluid flow with a known initial volume of p j bits of
data to send. Upon arrival/initiation at time a j, flow j is as-
signed a route denoted by r j 2 R and contends for bandwidth
on the links along its route.3 The set of links traversed by route
r is captured by a 0-1 matrix A where Alr is 1 if router r tra-

3For simplicity we assume routes are stable, i.e., for the most part flow asso-
ciated with a given transfer follows the same route.
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verses link l and 0 otherwise. We let x j = (x j(t); t � 0) denote
the bandwidth allocated to flow j as a function of time. We as-
sume without loss of generality that it is zero prior to a flow’s
arrival and after it departs. The time to complete flow j, i.e., its
transfer delay, is denoted by d j and depends on its size p j and
the possibly time varying bandwidth the flow is allocated. As
mentioned earlier we will focus on the bit transmission delay as
the performance measure of interest where the BTD for flow j
is given by b j = d j=p j. We summarize the notation in Table I
and formally define the problem of interest as follows.

Problem 1 (Dynamic Bandwidth Allocation)

min
1
jJj ∑j2J

b j =
1
jJj ∑j2J

d j

p j
;

over x = (x j : R+! R+; j 2 J);

s:t: p j =

Z a j+d j

a j

x j(τ)dτ; 8 j 2 J;

∑
j2J

Alr j x j(t)� cl ; 8t � 0; l 2 L:

TABLE I

NOTATION SUMMARY

Set of Links: L capacities cl ; l 2 L
Set of Routes: R link-route incidence matrix Alr

Set of Jobs: J (a j; p j;r j) for flow j
(arrival time, size, route)

Bandwidth Allocation x = (x j(t); t � 0; j 2 J)
Performance Metrics d j, b j = d j=p j, 1

jJj ∑ j2J d j=p j

delay, BTD, avg BTD

Notice that the problem stated above aims at minimizing the
average BTD for a ‘finite’ set of jobs J with known arrival
times - this is the so called off-line regime, which serves to
identify the best one could do. In practice future arrival times
would not be known whence only allocation policies that de-
pend on past events, i.e., on-line policies are permissible. If
further the arrivals and flow sizes were modeled by station-
ary stochastic processes, one can consider optimizing the cus-
tomer average BTD over stationary causal policies, i.e., mini-
mize E [B] = limjJj!∞

1
jJj ∑ j2J B j, where B denotes the typical

BTD experienced under a stationary dynamic bandwidth allo-
cation policy. We refer to bandwidth allocations that minimize
the average BTD for arbitrary arrivals as BTD-optimal.

Authors of [5], [6], [7], [8], [9] considered stochastic mod-
els to capture the dynamic behavior of existing network mech-
anisms, e.g., TCP and traditional fairness criteria. One lesson
from this body of work is that, even for a given bandwidth al-
location policy, it is difficult to analytically model the perfor-
mance seen by users in a dynamic network setting, except for
specially structured topologies. To our knowledge, the only ex-
isting work that attempts to find a BTD-optimal policy at the
network level was conducted in [11]. Their results however
suggest that the problem is NP-hard unless one allows ‘resource
augmentation’. In fact, one can show that even for flows sharing
a single link, there is no online algorithm that minimizes the av-

erage BTD [12]. One key idea drawn from the single link case
is that the Shortest Remaining Processing Time first (SRPT)
scheduling discipline performs well for the average delay as
well as BTD metric [9], [12], [13]. However, to our knowl-
edge, no systematic allocation criterion and associated trans-
port mechanism have been proposed to enhance user perceived
performance on a network.

Due to the inherent difficulty of this problem, in the sequel
we will pursue this problem in the ‘transient’ regime where it
is tractable. More specifically, we consider the set of ongoing
flows J(t) at time t where some of them may have been partially
transferred, and the goal is to minimize the overall ‘residual
BTD’, where the residual BTD of flow j at time t is defined as
b j(t)= ( f j�t)=p j, and f j denotes the time at which the transfer
completes. Our investigation of the transient regime provides
an avenue for determining greedy policies for the online prob-
lem, where, at each point in time, bandwidth is allocated so as
to complete the current set of ongoing flows in a BTD-optimal
manner.

III. OPTIMIZING AVERAGE BTD: SINGLE LINK CASE

We begin by considering the case where flows contend for
bandwidth on a single link. Despite its simplicity this model
captures the scenario where a set of flows are constrained by
the same bottleneck, e.g., an access gateway.

A. Fair sharing

In the context of sharing a single link, traditional fairness cri-
teria, e.g., max-min and proportional fair, reduce to fair sharing,
i.e., each ongoing flow gets an equal share of the available band-
width. A collection of TCP flows with the same round trip time
would approximately realize their fair share of the capacity. For
simplicity, we consider an idealization where each ongoing flow
j 2 J(t) at time t is assigned a bandwidth x j(t) = c=n(t) where
c is the link capacity and n(t) = jJ(t)j is the total number of on-
going flows at time t. We shall consider this to be our baseline
bandwidth allocation policy for the single link case.

While ‘fairness’ has been discussed at length, policies that
achieve fair shares do not necessarily achieve good user per-
ceived performance. In particular one can prove that in the case
of a single link, the average BTD (and delay) achieved by poli-
cies that share non-trivial amounts of capacity among multiple
flows can always be improved.

Lemma 1: Consider a set of flows contending for capacity
on a single link. Any bandwidth allocation policy that allocates
positive bandwidths to more than one flow at a time is not BTD-
optimal.
The proof relies on showing that one can always improve upon
policies that share bandwidth among ongoing flows by ‘speed-
ing’ up those that would complete earlier, i.e., giving them the
full link capacity, without penalizing the others - see the ap-
pendix. Note that the flows that will complete earlier are those
with smaller sizes or residual work to be done. This suggests
one might consider alternative bandwidth allocation policies
that differentiate based on flows’ (residual) sizes.
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B. Size-dependent differentiation

A well known size-dependent scheduling, or bandwidth allo-
cation, policy is the Shortest Remaining Processing Time first
(SRPT) discipline. Let p j(t) denote the residual work associ-
ated with flow j at time t. Then SRPT assigns the full link
capacity to a flow j� 2 J(t) with the smallest residual work,
i.e., j� 2 argmin j2J(t)(p j(t)). SRPT is known to minimize the
average delay for flows sharing a single link (with fixed capac-
ity) [15], and was recently shown to be 2-competitive for the
average BTD metric [12]. With a view on further enhancing
performance and developing allocation policies that can be im-
plemented, below we propose several other novel policies to
realize size-dependent differentiation.

First we shall consider a policy that allocates the full capacity
to the flow j� having the smallest product of original and resid-
ual size, i.e., j� = argmini2J(t)(pi � pi(t)). We refer to this as the
Shortest Processing Time Product first (SPTP) policy. The ra-
tionale for this can be easily seen by considering the case where
two flows have the same residual size. In this case it should be
clear that to minimize the BTD, one should favor the flow with
the smallest original size. In fact one can show that SPTP corre-
sponds to a greedy policy which at any time seeks to minimize
the overall ‘residual’ BTD assuming there are no future arrivals.

Theorem 1: At each point in time the SPTP bandwidth allo-
cation policy will minimize the overall residual BTD for ongo-
ing flows sharing a single fixed capacity link if there were no
additional arrivals.
A proof of this result is given in the appendix. Thus one can
think of SPTP as a greedy online policy in the sense that it al-
ways seeks to do the best for the flows that are currently ac-
tive, i.e., empty the system incurring a minimum overall resid-
ual BTD. We will show via simulation that SPTP marginally
outperforms SRPT with respect to the average BTD. We later
revisit this policy when we consider a network scenario.

Recognizing that allocating bandwidth based on SRPT and
SPTP will be difficult in a decentralized framework, we propose
a second class of policies whereby each active flow j has an as-
sociated size-dependent weight w(p j ; p j(t)), and bandwidth is
allocated in proportion to these weights. Thus by appropriately
selecting weight functions that are decreasing in the residual
size, e.g., w j(t) = exp(�αp j(t)) where α > 0, one may ap-
proximate the SRPT discipline as α ! ∞. Similarly, SPTP can
be approximated by using w j(t) = exp(�α

p
p j � p j(t)). We re-

fer to these two size-dependent weighted fair sharing policies
as Remaining Processing Time Weighted Sharing (RPT-WS)
and Processing Time Product Weighted Sharing (PTP-WS). Al-
though Lemma 1 suggests that one can always improve per-
formance over policies that share bandwidth, such as RPT-WS
and PTP-WS, we will show that they already achieve signifi-
cant performance improvement over fair sharing while allowing
flows to simultaneously make progress towards completion.

C. Performance gains of size-dependent differentiation

Recently [13] showed analytical bounds for the performance
gains that can be achieved by SRPT versus fair sharing for
heavy tailed flows. In this section we shall revisit this and
briefly evaluate the three new policies proposed above, i.e.,

SPTP, RPT-WS, and PTP-WS, vs. fair sharing via simulation.
Simulations were conducted for a 10 Mbps link shared

by flows arriving according to Poisson processes and have
sizes selected from a bounded Pareto distribution with mean
5 KBytes. Fig.1 shows the average BTD performance improve-
ment achieved by size-dependent policies over fair sharing. As
can be seen the four size-dependent policies significantly out-
perform fair sharing with SPTP exhibiting the best average
BTD. In these simulations we use a moderate value of α = 1
in RPT-WS and PTP-WS, and they already exhibit 30-60% im-
provements over fair sharing. Based on our experiments, the
average BTD performance achieved by RPT-WS and PTP-WS
improves quickly as one increases the value of α.
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Fig. 1. Average BTD improvement for SRPT, SPTP, RPT-WS, and PTP-WS
over fair sharing as traffic load increases.

Above analysis provides various bandwidth allocation ap-
proaches that favor small flows, as an avenue towards mini-
mizing the average BTD for the single link case. A criticism
brought against these SRPT-like polices is their potential to in-
duce starvation for large flows. However [13] and [16] have ar-
gued and shown that this conclusion does not apply in the case
where the flow sizes have a large variance - which is typical
of files transferred over the Internet [10]. Our own experiments
also confirm that starvation is indeed not a concern, particularly
as compared to fair sharing. Refer to [14] for a more detailed
discussion.

IV. OPTIMIZING AVERAGE BTD: NETWORK CASE

Although the single link case suggests one should ‘always’
favor small flows to minimize the average BTD, this turns out
not to be true in general. In the network case a flow with a small
residual size may contend for bandwidth with multiple sets of
flows on disjoint routes and which can be served in parallel.
This leads to a trade off between giving preferential treatment
to flows with smaller residual size versus maximizing the ser-
vice parallelism that can be achieved. Consider the symmetric
linear network shown in Fig.2 including m links with the same
capacity c, and m short and 1 long route. Even if there were a

c c c

m−hop jobs (r=0)

1−hop jobs (r=1)

Fig. 2. Linear network: m equal capacity links.
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flow with a small residual size on the long route, one may wish
not to allocate the full capacity on all the links to it, since this
would temporarily ‘block’ the concurrent service of flows on
various short routes. In the sequel we will consider this linear
network in more detail as a means to identify the characteristics
that a ‘good’ bandwidth allocation might have. We then for-
mally define a class of dynamic bandwidth allocation criteria
that one might use to enhance the average BTD performance
on general networks.

A. Example: Symmetric Linear Network

To simplify our analysis, suppose that the bandwidth allo-
cation among flows sharing the same route is independent of
the aggregate bandwidth allocated to that route, and follows the
SPTP policy introduced in xIII. That is, at any given time t,
an aggregate route bandwidth yr(t) will be allocated to the flow
that has the smallest product of original and residual size among
all flows on route r, regardless of the value of yr(t). We shall
refer to the SPTP discipline as our ‘intra-route’ bandwidth allo-
cation policy, i.e., dictating how bandwidth is allocated among
flows sharing the same route. The question then is to identify
the aggregate route bandwidths (yr(t); t � 0; r 2 R) to allocate
to each route, i.e., a good ‘inter-route’ bandwidth allocation.

For succinctness we refer to the long route as the m-hop route
and give it route index r = 0, while the set of short routes are re-
ferred to as 1-hop routes and indexed by r = 1;2; � � � ;m. Since
link capacities are equal, it should be clear that each 1-hop route
can be allocated the same aggregate route bandwidth without
compromising optimality, i.e., c minus that allocated to the m-
hop route. This means that we need only consider bandwidth
allocations which give the same bandwidth to all 1-hop routes.
In the sequel we let y1(t) denote the aggregate bandwidth allo-
cated to any of the 1-hop routes, and y0(t) be that allocated to
the m-hop route. This symmetry in the topology significantly
simplifies the state space, and thus the analysis of interactions
among routes. In particular, the dynamics on this network cor-
respond to m-hop flows contending for a ‘single bottleneck’ re-
source of capacity c with ‘all’ flows on 1-hop routes, but where
some of the 1-hop flows can be served in parallel. By analogy
with Lemma 1 for flows sharing a single link, one can show a
‘no-sharing’ result for the symmetric linear network. The proof
is similar to that of Lemma 1, and thus omitted in this paper due
to limited space.

Lemma 2: A BTD-optimal inter-route bandwidth allocation
y� for flows on a symmetric linear network (see Fig.2) is such
that at any time t either y�0(t) = 0 or y�0(t) = c:

Combining the necessary condition in Lemma 2 with the as-
sumption that flows on the same route are allocated bandwidth
according to the SPTP policy, below we determine a BTD-
optimal inter-route bandwidth allocation policy for the linear
network in the transient regime. More specifically, the policy
determines whether to allocate the full capacity c to the m-hop
route (or 1-hop route otherwise) at any time t such that the over-
all residual BTD is minimized assuming no arrivals after time t.
Before presenting this last result we introduce some further no-
tation. Without loss of generality, we shall separately index the
n0(t) m-hop flows and all n1(t) 1-hop flows in the network at

time t according to their finishing order assuming that they are
served according to SPTP among flows on the same route. To
distinguish the flows that belong to different route types, we use
p0

j and p1
j to denote the original size of the jth m-hop and 1-hop

flow to complete, respectively. Similar notation applies to the
residual size. Furthermore, We define the cumulative residual
work, p̃s

j(t) = ∑i� j & ri=r j
ps

i (t); s = 0;1, as the total residual
work that needs to complete on the route associated with flow
j prior to its completion. We assume ties are broken arbitrarily.
Now we may present our policy.

Algorithm 1 (Greedy Algorithm for Linear Network) At any
time t, y�0(t) = c and y�1(t) = 0 if

1

p0
1

�

c

p̃0
1(t)| {z }

max-wgt-thruput
(m-hop route)

> max
k=1;2;��� ;n1(t)

"
(

1
k

k

∑
l=1

1

p1
l

) � (
k � c

p̃1
k(t)

)

#
| {z }

max-weighted-throughput
(1-hop routes)

(1)

and y�0(t) = 0 and y�1(t) = c otherwise.
Theorem 2: At each point in time Algorithm 1 minimizes the

overall residual BTD for flows on the linear network shown in
Fig.2, assuming that SPTP is the intra-route policy and there
are no future arrivals.

Despite its lengthy proof (given in the appendix), (1) in Algo-
rithm 1 has a fairly simple interpretation. In deciding whether to
allocate bandwidth to the long or short routes, one needs to as-
sess which option will lead to the highest ‘weighted throughput’
considering various finite time windows into the future. More
specifically, the throughput over a time window, measured in
flows/sec, is given by the number of flows that complete service
in that window. The weight is given by the average of the re-
ciprocal sizes for the flows that complete service in the window
under consideration. Intuitively, this weighting factor accounts
for the impact that completing these flows has on BTD.

Consider for example the m-hop route. If the full capacity
were allocated to it, the first flow (in SPTP order) will take
p̃0

1(t)=c = p0
1(t)=c seconds to complete and have a weight 1=p0

1
- thus a weighted throughput of c=(p0

1 � p0
1(t)). One can show

that this corresponds to the highest weighted throughput one
can achieve by allocating the full capacity to this route for any
time window - i.e., the left hand side of (1). By contrast, when
flows can be served in parallel, e.g., 1 hop flows on distinct
routes, one might achieve the maximum weighted throughput
by considering a time window in which ‘multiple’ flows com-
plete. In particular if the full capacity is allocated to the 1-hop
routes, then p̃1

k(s)=c is the time to complete k flows (in SPTP
order for each 1-hop route) and 1

k ∑k
l=1(1=p1

l ) is their associ-
ated weight. Considering all possible windows into the future,
one will obtain the term on the right of (1). Because of the
possibility that one might achieve a higher weighted through-
put by serving flows in parallel, one should not put excessive
emphasis on favoring small flows traversing long routes when
deciding inter-route bandwidth allocation.

B. Size-Based Adaptive Bandwidth Allocation

The above example shows the potential complexity of a
BTD-optimal policy for the transient regime. Even for a simple
toy network, one may need to account for the sizes of almost all
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flows (the ‘smallest’ m-hop flow and all 1-hop flows) to deter-
mine a bandwidth allocation that minimizes the overall residual
BTD. We will show later via simulation that this policy exhibits
excellent performance as an greedy online strategy for allocat-
ing bandwidth on a symmetric linear network. However it does
require a centralized agent to coordinate across flows and routes
to determine dynamic changes in the bandwidth allocation. As
a step towards a more practical realization, below we propose
a general class of bandwidth allocation criteria where per-user
weights that depend on residual sizes are considered. Follow-
ing [1], [2], [4], we define a class of size-dependent adaptive
bandwidth allocations (SABA).

Definition 1: Let J(t) denote the set of active flows at time
t, and p j(t) be the residual size of flow j 2 J(t). A bandwidth
allocation, (x�(t); t � 0), is said to satisfy Size-based Adaptive
Bandwidth Allocation (SABA) criterion if and only if at each
time t,

x�(t) = argmax
x(t)

∑
j2J(t)

wj(t) �Uβ(x j(t))

such that

∑
j2J(t)

Alr j x j(t)� c; 8 l 2 L;

where w j(t) is flow j’s weighting function depending on the
residual flow sizes at time t, and

Uβ(x) =

�
log x β = 1;
(1�β)�1 � x1�β β� 0 and β 6= 1:

(2)

is a utility function characterizing the sensitivity of a flow to its
bandwidth allocation. The first order optimality condition can
be written as follows: at any time t, x�(t) is optimal if for any
other feasible allocation x(t) we have that

∑
j2J(t)

wj(t)
x j(t)� x�j(t)

(x�j(t))
β � 0:

Bandwidth allocations associated with maximizing the util-
ity functions defined in (2) with fixed weights has been widely
considered [1], [2], [3], [4]. Notice that maximizing such over-
all user utility functions subject to resource constraints natu-
rally favors flows that use fewer resources, therefore achieving
higher service parallelism. Our premise is that the introduction
of per-flow weights depending on the residual size of flows en-
able SABA to achieve better average BTD. In the next section
we shall discuss how the choice of weight functions might im-
pact SABA’s performance.

V. ROLE OF RESIDUAL SIZE DEPENDENT WEIGHTS

The challenge to devising size dependent weights is to pro-
vide both appropriate intra and inter-route bandwidth alloca-
tions, while not precluding possible implementation. In partic-
ular we propose to parameterize a flow’s weight as

wj(t) = win(p j(t)) �

2
4∑k2Jr j (t)

(wex(pk(t)))1=β

∑k2Jr j (t)
(win(pk(t)))1=β

3
5

β

; (3)

where Jr j(t) is the set of flows sharing route r j with flow j,
and the internal (intra-route) and external (inter-route) weight
functions win and wex are non-increasing in the residual flow
sizes. Note that we have selected weights that only depend on
the ‘residual’ size4.

Notice that by using the same function for w in and wex, the
weight of each flow based on (3) will depend on only its own
residual size, i.e., w j(t) = w(p j(t)). If it is permissible to coor-
dinate among flows that share the same route, i.e., have access
to their residual flow sizes, one may employ different functions
for win and wex, in which case a flow’s weight depends on the
residual sizes of all flows on the same route. In the sequel, we
will discuss the possible benefits of the latter option and how
one might select win and wex.

A. Decoupling Intra & Inter-route Bandwidth Allocation

An important character of our proposed weight function in
(3) is that it allows one to decouple the impact of residual flow
sizes on the intra and inter-route bandwidth allocation by using
different functions for w in and wex. Facts 1 and 2 below charac-
terize how bandwidth would be allocated among flows sharing
the same route and across routes– proofs are given in the ap-
pendix.

Fact 1: At any time t the SABA bandwidth allocation for
two flows, i and j, sharing the same route satisfies

x�i (t)
x�j(t)

=

�
wi(t)
wj(t)

�1=β
=

�
win(pi(t))
win(p j(t))

�1=β
:

Fact 2: Let yr(t) = ∑ j2Jr(t) x j(t) be the total bandwidth al-
located to the flows sharing route r at time t. The first order
optimality condition associated with SABA can be restated as,
y�(t) = (y�r (t); r 2 R) is optimal if for any other feasible allo-
cation y(t) = (yr(t); r 2 R),

∑
r

vr(t)
yr(t)� y�r (t)

(y�r (t))β � 0;

where

vr(t) =

 
∑

j2Jr(t)

wj(t)
1
β

!β

=

 
∑

j2Jr(t)

wex(p j(t))
1
β

!β

denotes an ‘aggregate weight’ associated with route r.
Note that the relative bandwidth allocated to flows sharing

the same route only depends on the selection of w in, while the
aggregate route bandwidth depends on w ex. This allows one
to use different functions to determine the intra and inter-route
SABA bandwidth allocations. In particular, as the results in xIII
and IV suggest, one might want to discriminate heavily against
large flows for the intra-route allocation, but trade off such dis-
crimination with parallelism when it comes to inter-route band-
width allocation. Our simulations suggest that this decoupling
scheme can achieve a better average BTD than that resulting
from using the same residual size based weight for both the in-
tra and inter-route bandwidth allocations.

4Our experience based on simulation suggests that there are only marginal
differences in performance if one also introduces the original size.
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B. Design of Weights

In this subsection we briefly discuss how w in and wex might
be selected. The goal is to provide residual size-based dif-
ferentiation favoring small flows, thus we consider decreas-
ing functions in the residual flow size. Two possible can-
didates are the exponential and the reciprocal functions, i.e.,
w(p j(t)) = e�αp j(t) and w(p j(t)) = (p j(t))�α, respectively,
where α > 0 allows one to vary the degree of size-based dif-
ferentiation. In particular, one may use a larger α in for win to
provide a more significant discrimination for intra-route band-
width allocation, and a smaller αex for wex. Note that the weight
functions are based on the ‘residual’ sizes. Thus even if dis-
crimination among flows is small at a given point in time the
dynamics are such that bandwidth allocation will be increas-
ingly biased as flows progress toward completion. Similarly if
a given bandwidth allocation achieves good parallelism, then it
will be reflected in the relative increase in weights for the as-
sociated flows, and this characteristic of the allocation will be
further emphasized.

Based on our experiments, we observe that SABA in general
achieves similar performance, particularly when compared to
traditional fairness criteria, as long as one provides reasonable
differentiation in favor of small flows. In particular, we observe
a slightly better performance gain if one decouples the intra and
inter-route bandwidth allocation, by using, for example, a larger
value for αin than αex. Furthermore, due to the fact that increases
in β reduce the impact of the size-dependent weights (see Fact
1 and 2), it is advisable to use a small value of β to achieve
a better average BTD. With the above guidelines in mind, but
not aiming at optimizing the choice of parameters, we consider
a version of SABA that employs reciprocal weight functions
with αin = 5 and αex = 1 for win and wex, respectively, and β =
1 (utility function associated with proportional fairness), and
present simulation results for this case in the next section.

VI. PERFORMANCE GAINS UNDER SABA: FLUID-FLOW

SIMULATION

We conducted simulations to validate the performance gains
of SABA over traditional fairness criteria, such as max-min,
proportional, and potential delay fair bandwidth allocation [2].
The ‘idealized’ fluid-flow simulations exhibited in this section
are discrete event simulations where events correspond to flow
arrivals and departures and bandwidth allocations were com-
puted (for the criterion being considered) and then frozen dur-
ing inter-event periods. This cuts down simulation time sig-
nificantly allowing a reasonable exploration of various system
parameters.

We first consider a 5-link linear network where each link has
capacity 10 Mbps, see Fig.2. We assume that flows arrive to
each route according to Poisson processes with the same ar-
rival rate and the flow size distribution is bounded Pareto with
mean 5 KBytes. Fig.3 shows the average BTD achieved by
SABA, the greedy algorithm proposed in xIV, and the three tra-
ditional bandwidth allocation policies. Observe that SABA and
the greedy algorithm significantly outperform the three other
policies, e.g., a performance improvements of 58% when the
links are 80% loaded. Note that the three traditional criteria

result in similar performance with max-min having a slight ad-
vantage 5. In the remainder of this section we will focus on
max-min as our baseline criterion for performance comparisons
on our network.
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Fig. 3. Average BTD achieved by SABA, the greedy algorithm, and various
fairness policies on a 5-link linear network.

We also conducted simulations for the symmetric star net-
work shown in Fig.4, as well as a collection of random mesh
topologies. Each of the random networks has 8 nodes and a
40% connectivity, i.e., each node on average connects to 40%
of other nodes, and link capacities are uniformly distributed be-
tween 10 to 20 Mbps. The star topology is arguably a good ab-
straction for networks with bottlenecks at the access points and
transparent big backbone pipes, while the mesh ones might cap-
ture bottlenecks connecting peering points between domains. In
both cases we assume the same bounded Pareto flow size distri-
bution, Poisson arrivals with sources and destinations uniformly
chosen among the access domains or mesh network nodes, re-
spectively, and shortest hop routes.

Backbone Access Domains

Fig. 4. A star network with six 10 Mbps access links.

Fig.5 shows the average BTD performance improvements
achieved by SABA versus max-min fair bandwidth allocation
on a star network as well as an average over 15 random topolo-
gies as the traffic load increases. In comparison to the linear
network case, we observe a higher performance improvement
for the symmetric star network and comparable improvements
for the simulated random topologies, e.g., 70%, 57%, and 58%
for the star, random, and linear networks at 80% traffic load,
respectively. These results substantiate the potential for perfor-
mance gains that can be achieved by using SABA over tradi-
tional fairness criteria.

VII. IMPLEMENTATION OF SABA: SARENO

The SABA criterion proposed in xIV-B requires that the al-
located bandwidth instantaneously track the optimal solution
to a network optimization problem which in turn depends on
the changing network state. In practice, decentralized trans-
port mechanisms, e.g., TCP, can be designed to approximate

5Authors in [5] also suggested that various traditional fairness criteria achieve
similar performance in the dynamic regime.
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Fig. 5. Average BTD improvements achieved by SABA over max-min fair
allocation on the star and random networks as the traffic load increases.

such idealized allocations, see e.g., [1], [3], [4], [17]. Below
we present a simple preliminary implementation of SABA by
incorporating the residual flow size factor into the TCP Reno
control mechanism.

A. SAReno: Reno with Size-based Differentiation

A key phase for TCP Reno is the congestion avoidance phase,
where the user, i.e., sender, additively increases his window size
(transmission rate) when receiving acknowledgments and mul-
tiplicatively decreases it if network feedback indicates conges-
tion, e.g., time-outs or marked packets. The default linear in-
crease rate and the multiplicative decrease ratio for TCP Reno
are

δReno = 1=cwnd and κReno = 0:5 � cwnd;

respectively, where cwnd is the current congestion window size
in packets. In other words, assuming no loss every round trip
time the cwnd increases by approximately 1 packet, while upon
an indication of congestion it is reduced by a half.

To realize SABA we propose to modulate the ‘additive in-
crease rate’ and the ‘multiplicative decrease ratio’ at the sender
side by the residual flow size. We call this size-dependent user
adaptation mechanism SAReno. We considered the case where
each user only has access to his own residual flow size informa-
tion, i.e., SABA with win = wex. SAReno obtains the initial size
of the transfer from the application layer and then keeps track
of the residual size by monitoring the sequence numbers of the
acknowledged packets. For simplicity, we quantize flow sizes
into five regions, and define the residual size dependent linear
increase rate and multiplicative decrease ratio associated with
SAReno as in Table II. For example, a SAReno flow with 20

TABLE II

PARAMETERS FOR SARENO: δ (1/CWND), κ (CWND)

range of p(t) (packets)
[0;10) [10;50) [50;200) [200;103) [103;∞)

δ(p(t)) 10 5 1 0.5 0.25
κ(p(t)) 1.0 0.9 0.5 0.1 0.01

packets unacknowledged at time t has δSAReno(t) = 5=cwnd and
κSAReno(t) = 0:9 cwnd. Recall that the key idea is that the fewer
number of packets left to be acknowledged by the receiver, the
more aggressive (larger δ and κ) a flow should be, and vice
versa. Based on our experience, we note that one should not use
values which are too small for the linear increase rate for flows

with large residual number of packets to send. This is because
one may still want large flows to increase quickly to achieve
reasonable throughputs when no small flows are present. The
decrease ratio however can be set very small for large flows al-
lowing one to give ‘aggressive’ priority to small flows during
congestion. In fact if flows with a small residual size, say 10
packets yet to be sent and/or acknowledged, do not back off,
then they can quickly complete their transfers without individ-
ually experiencing re-occurring congestion. Note that this is
a preliminary design of SAReno. One can certainly engineer
the parameters, or implement SABA based on other versions of
TCP or other transport protocols. Our intent here is to provide
a proof-of-concept implementation that exhibit the benefits by
employing the size dependent differentiation.

B. Performance Gains: SAReno vs. Reno

In this subsection we will present our simulation results com-
paring the average BTD achieved by SAReno versus Reno us-
ing the NS-2 [18] simulator. We focus on the star network con-
sidered in xVI with 1 ms propagation delay on each link. We
assume the same arrival processes as those used in xVI. The
flow size distribution is assumed to be bounded Pareto with
mean 50 KBytes, i.e., 100 packets with 500 bytes per packet.
We selected a larger mean flow size than is currently typical
of TCP transfers on the Internet, so as to exhibit the perfor-
mance impacts of SAReno on larger flows, e.g., bulk transfers,
and ignoring extremely small ones which are likely to complete
before entering the congestion avoidance phase.

Fig.6 shows the average BTD achieved by SAReno and Reno
with various link packet scheduling mechanisms as the traf-
fic load increases. We considered two different underlying
packet scheduling disciplines: First Come Fist Serve (FCFS)
and Deficit Round Robin (DRR) [19]. While FCFS is consid-
ered the ‘default’ discipline, we also present the results for DRR
to show the performance benefits that would accrue if fair queu-
ing and SAReno were employed together. As seen SAReno
outperforms Reno for both the FCFS and DRR cases - by about
30-40% for a range of traffic loads. These improvements are
significant, but less than those exhibited in the fluid-flow sim-
ulations presented in xVI. This is partly due to the fact that
we have only introduced size-based differentiation in the con-
gestion avoidance phase, which may not be reached by small
flows. Then again perhaps the performance improvements for
these types of flows are not as critical.
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Fig. 6. Average BTD achieved by various Reno/SAReno and FCFS/DRR com-
binations when traffic load increases.

As seen in Fig.6 the average BTD performance achieved with
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FCFS is much worse than that with DRR, for both Reno and
SAReno. Networks supporting ‘packet level’ scheduling fair-
ness will allow transport mechanisms such as SAReno to realize
the size-dependent differentiation more quickly, and thus en-
hance the overall performance. A fair share packet scheduling
mechanism, e.g., DRR, exhibits good performance, but requires
per-flow state and thus does not scale well when one needs to
support a large number of ongoing flows, e.g., on core routers.
Further experiments on alternative topologies show that imple-
menting this only at bottlenecks, e.g., access points and or peer-
ing points, suffices to achieve these additional gains in perfor-
mance.

Additional simulations of SAReno were carried out for the
set of random mesh networks discussed earlier. We saw per-
formance improvements over Reno ranging from 26-38% with
90% confidence intervals, i.e., similar gains as those found for
star networks.

C. Penetration Experiments

An interesting question is how SAReno and Reno flows
might fare if they coexist on a network. We conducted pre-
liminary simulations to determine how the performance bene-
fits would vary with the penetration of SAReno flows increases.
The simulations presented below are for the 6-branch star net-
work.

In the first scenario the transfers to be mediated via SAReno
rather than Reno were selected at random, i.e., fairly homo-
geneous, according to the penetration level considered. Fig.7
shows the normalized average BTD over all flows, for Reno
flows only, and for SAReno flows, as the percentage of SAReno
flows increases. They are normalized by the average BTD that
would be achieved when all flows are mediated via Reno, i.e.,
0% SAReno flows. As seen, SAReno flows will see better av-
erage BTD (the normalized BTD is less than one) for all pene-
tration levels. Moreover Reno flows will also see improved per-
formance once the penetration of SAReno flows exceeds 20%.
The fact that SAReno flows consistently see better performance
than Reno flows suggest that users will have proper incentives
to upgrade from Reno to SAReno.
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Fig. 7. Normalized BTD as the percentage of (random) SAReno flows in-
creases.

Alternatively SAReno might not be deployed in the homo-
geneous manner discussed above, but in a more clustered man-
ner corresponding to, say, access domains that adopt the new
transport service. For example, one might have an increasing
number of access domains that use SAReno. We thus exam-

ine the average BTD performance as one increases the num-
ber of access nodes on the star network that mediate transfers
via SAReno. Fig.8 shows the normalized average BTD over all
flows, Reno flows, and SAReno flows as the number of SAReno
domain increases from 0 (all Reno) to 6 (all SAReno). One can
observe that when one deploys SAReno on a per-domain ba-
sis, it has a even quicker impact than the homogeneous random
deployment scenario (Fig.7). This is to be expected since the
intra-route discrimination can be more effective when SAReno
flows originate from the same access domain.
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Fig. 8. Normalized BTD when one increases the number of domains that sends
SAReno flows.

VIII. FUTURE WORK

We have shown that job-size dependent differentiation at the
transport level for elastic flows provides an avenue for signifi-
cant performance improvements, greater than 40 % , in the av-
erage user perceived BTD. These results are very encouraging,
and suggest in our opinion that this line of research and pos-
sibly development warrants further exploration. We note that
size-based differentiation can be also realized at the application
layer. In fact [20] have proposed and developed an implemen-
tation of SRPT on web servers. However, implementing differ-
entiation at the transport level, enables one to address network
bottlenecks and/or interactions among various flows on the net-
work resources rather than simply on the end systems. We are
currently addressing the question of stability for bandwidth al-
location based on residual flow sizes, though we note that the
case where weights depend on initial flow sizes can be shown
to be stable using the techniques in [5], [8]. Further interesting
questions pertain to the impact of size-based differentiation ver-
sus fair sharing when traffic fluctuation leads to transient over-
loads, particularly with impatient users, see [21], [22].

APPENDIX

I. PROOF FOR LEMMA 1

Proof: We will prove a more general case where a pre-
determined time-varying link capacity is considered. Let J
denote the set of flows that share a single link with capacity
c(t); t � 0. Consider a bandwidth allocation x = (x j(t); j 2
J; t � 0) that allocates positive bandwidths to more than one
flows during some time interval [t �; t�+ τ) for some τ > 0. We
denote the set of flows that receives positive bandwidth dur-
ing [t�; t�+ τ) as J+(t�; t�+ τ) � J where jJ+(t�; t�+ τ)j> 1.
Furthermore, define A(t;∞) = f jj j 2 J; a j > t�g. as the set
of flows that arrive after time t �. Consider the flow k =
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argmin j2JnA(t;∞)f f jg where f j is the finishing time of flow j.
In the sequel we will show that one can always improve flow
k’s delay and thus its BTD without increasing any other flow’s
delay by slightly altering x.

First, consider the case where k 2 J+(t�; t� + τ). Let x0 =
(x0j(t); j 2 J; t � 0) be an alternative feasible bandwidth allo-
cation which only differ from x during the time interval [t �; fk)
in that (1) a full ‘reduced’ capacity c̃(t) = c(t)� ∑ j2A(t;∞) x j(t)
is allocated to flow k until it finishes, (2) arbitrary bandwidths
allocated to all flows j 2 J nA(t;∞) n k during [t �; fk) requir-
ing that

R fk
t� x0j(t) =

R fk
t� x j(t), and (3) no changes for flows in

A(t;∞). Clearly flow k will finish earlier than fk under the
new x0, since xk(t) < c̃(t) during at least [t�; t� + τ). Mean-
while, since other flows in j 2 J nA(t;∞)nk completes the same
amount of work during [t �; fk) and none of them finishes before
fk even under x, they do not see a change in their delay. Finally,
no flow in A(t;∞) sees any change under x 0 since they have the
same bandwidth allocation.

Next we consider the impact of x 0 for the scenario where k 62
J+(t�; t�+ τ). Clearly, flow k’s delay is still smaller under x0

since xk(t) = 0 during [t�; t�+ τ). Same arguments apply for
the other flows, and thus the theorem follows.

II. PROOF FOR THEOREM 1

Proof: According to Lemma 1 we only need to determine
the optimal ‘service’ order of the flows in J(t), the set of on-
going flows at time t. Without loss of generality, we index the
flows in J(t) according to the non-decreasing order of p j � p j(t)
with ties broken arbitrarily, i.e., pi � pi(t) � p j � p j(t); 8i < j.
Also for convenience we assume unit link capacity.

Consider a service order Ψ that does not follow the SPTP
rule, i.e., there exists at least one pair of flows (i; j) such that
pi � pi(t)< p j � p j(t) but i is served after j. For convenience we
call such pair to be ‘non-conforming.’ Note that there must exist
at least one non-conforming pair that is in consecutive service
order within Ψ. Let i and j = i+1 denote one non-conforming
and consecutive pair of flows. Now if we consider a new service
order Ψ0 that is the same as Ψ except it swaps the service order
of i and j. The difference in the residual BTD is

∑
k2J(t)

dΨ0

k (t)

pk
� ∑

k2J(t)

dΨ
k (t)

pk
=

pi(t)
p j

�
p j(t)

pi
< 0:

The last inequality is due to that pi � pi(t) < p j � p j(t). Con-
tinuing this swapping procedure one will have a service order
within finite steps that satisfies SPTP with each swapping step
resulting in less overall residual BTD. Note that having multi-
ple service orders satisfying SPTP can only happen when there
is a tie in pk(t) � pk. These service order however incur no dif-
ference in the overall residual BTD. Thus a service order that
follows SPTP must minimize the overall residual BTD.

III. PROOF FOR THEOREM 2

Proof: For convenience we set cl = 1 and re-normalize
all the parameters accordingly. We decompose the residual de-
lay (and thus the residual BTD) for each flow into two compo-
nents: (1) the total service time consumed by the flows on the

same type of route that finish before that flow completes (thus
including itself), and (2) the service time consumed by the flows
on the other route type that are considered to be served before
the given flow. Since the capacity should always be fully allo-
cated to one of the route types (Lemma 2) and we assume SPTP
to be the intra-route policy, we can determine the service order
for the flows on the m-hop route and that for the flows on all
1-hop routes regardless of how they are scheduled with respect
to those on the other route type. The service order for route
type s = 0;1 thus follows the non-decreasing order of p̃ s

j(t), as
defined in the text, and p̃s

j(t) is in fact the first delay component
for flow j (the jth flow to finish) on route type s.

Thus to minimize the overall BTD, we should minimize the
residual BTDs due to the second component. Note that the sec-
ond component is determined by how one interleaves the two
service schedules for the m-hop flows and 1-hop flows. With-
out loss of generality we consider when to start serving each
of the m-hop flows among the 1-hop flows one by one. Sup-
pose we start serving m-hop flow j immediately after k 1-hop
flows finish. The total residual BTD contributed by the second
component to the m-hop flow j and all 1-hop flows is

∆b( j;k) =
p̃1

k(t)

p0
j

+ p0
j(t) �

n1(t)

∑
i=k+1

1

p1
i

;

where p̃1
0(t) = 0, and k = 0 corresponds to the case where the

m-hop flow j is served before all 1-hop flows. This is true for
all j 2 f1; : : : ;n0(t)g and k 2 f0; : : : ;n1(t)g.

We now may denote the number of 1-hop flows that should
be served before serving the j th m-hop flow for the purpose
of minimizing ∆b( j;k) as k�j (t) = argmink2f0;:::;n1(t)g[∆b( j;k)].
Simple derivation can show that k�i � k�j ; 8i < j since p0

j �

p0
j(t) is non-decreasing in j. Thus there exist a set of

fk�j ; j = 1; : : : ;n0(t)g that minimizes the set of f∆b( j;k); j =

1; : : : ;n0(t)g as well as ∑n0(t)
j=1 ∆b( j;k), i.e., the total BTD in-

curred for all flows due to the second delay component.

IV. PROOF FOR FACT 1

Proof: Let x be a feasible bandwidth allocation that only
differs from the optimal x� at xi = x�i +∆ and x j = x�j �∆ for
some ∆2R where ri = r j . Considering the first order condition,
we have

wi
xi� x�i
(x�i )

β + wj
x j� x�j
(x�j)

β � 0;

) ∆

 
wi

(x�i )
β �

wj

(x�j)
β

!
� 0:

Since this is true for either ∆ > 0 or ∆ < 0, we have that
wi

(x�

i )
β =

w j

(x�

j )
β :

V. PROOF FOR FACT 2

Proof: We may re-write the left hand side of the
per-flow basis first order condition as follows. For conve-
nience, we suppress the time index writing w j;x j; p j and J for
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wj(t);x j(t); p j(t) and J(t), respectively.

∑
j2J

wj
x j � x�j
(x�j )

β = ∑
r2R

∑
j:r j=r

w j
x j � x�j
(x�j )

β ;

= ∑
r2R

∑
j:r j=r

w j

x j � (
w

1=β
j

∑k:rk=r j
w

1=β
k

y�r )

(
w

1=β
j

∑k:rk=r j
w

1=β
k

y�r )β
;

= ∑
r2R

(∑k:rk=r w1=β
k )β

(y�r )β

0
@ ∑

j:r j=r

x j�
∑ j:r j=r w1=β

j

∑k:rk=r j
w1=β

k

y�r

1
A ;

= ∑
r2R

( ∑
j:r j=r

w1=β
j )β

�
yr � y�r
(y�r )β

�
:

The per-route basis condition thus follows with the aggre-

gate route weight for route r being vr = (∑ j:r j=r w1=β
j )β =

(∑ j:r j=r(wex(p j))
1=β)β.
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