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Abstract

This is the first part of a two-parted report on development of a statis-
tical learning algorithm for a latent variable model referred to as coopera-
tive vector quantizer model. This part presents the theory and mathematical
derivations of a variational Bayesian learning algorithm for the model. The
model has general applications in the field of machine learning and signal
processing. For example it can be used to solve the problem of blind source
separation or image separation. Our special interest is in its potential biolog-
ical application in that we can use the model to simulate signal transduction
components regulating gene expression as latent variables. The algorithm
is capable of automatically and efficiently determining the number of latent
variables of the model, estimating the distribution of the parameters and la-
tent variables. Thus, we can use the model to address following biological
questions regarding gene expression regulation: (1) What are the key sig-
nal transduction components regulating gene expression in a given kind of
cell; (2) How many key components are needed to efficiently encode infor-
mation for gene expression regulation; (3) What are the states of the key
components for a given gene expression data point. Such information will
provide insight for understanding the mechanism of information organiza-
tion of cells, mechanism of diseases and drug effect/toxicity.



1 Introduction

1.1 Biological Motivation

A biological system has a sophisticated signal transduction system. Activation
of a signal transduction pathway usually involves change of state of many signal
transduction molecules which exert diverse cellular functions. Quite often, the
signal is be eventually passed to transcription factors or repressor which, in turn,
will activate or depress the transcription of genes. For example, activation of
epithelial growth hormone receptor (EGFR) usually activates a cascade of protein
kinases, which eventually activate transcription of a set of early response genes.
Thus, the correlated expression level of these early response genes simply reflects
the state of this signal transduction pathway. However, the biological systems
are complicated by the fact that different pathways are inter-weaved. It is not
uncommon that expression level of an individual gene is controlled by multiple
pathways. A ordinary cell has hundreds to thousands of receptors on it plasma
membrane and is constantly bombarded by different signals from surrounding
environment. It would be very inefficient if each of these receptors has a distinct
pathway controlling expression of individual genes. One can imagine that signals
from different receptors will eventually be orchestrated at a certain level such that
information is encoded most efficiently and, from this level, information is further
disseminated to control the expression of thousands genes. This is analogous
to information compression, where large amount of information is compressed,
passed through a channel and regenerated at the other end of channel. Let us
hypothesize that there exist some signal transduction components (STC) which
encode necessary information to control the gene expression for a give cell type.
Then, a biologist would tend to ask following questions:

1. What are these STC? Can one identify the STC and map them to a biological
entities such as proteins or pathways?

2. How many STC are needed to encode the information in a given kind cell?

3. Can one infer the state of these STC when provided with gene expression
data?

Capability of answering these questions will provide insight into a biologi-
cal system in terms of (1)how information of signal transduction pathways are
organized and what are the key components that can efficiently encode informa-
tion. (2) mechanism of diseases; (3) mechanism of drug effect or toxicity, and
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so on. However, these questions also pose serious challenges to computational
biologists because such information can not be directly observed from DNA mi-
croarray experiments, even though the contemporary DNA microarray technol-
ogy almost enables one to study the expression of genes almost at whole genome
level. Nonetheless, upon given gene expression data, a computational biologist
potentially can infer the information based on certain assumption and model. One
plausible approach is to model the STCs with latent variables in order to explain
how observed data are generated and use statistical learning techniques to infer
the parameters of the model. Once equipped with the parameters of model, one
can estimate the states of STC when given new microarray data. In this research,
we develop a novel learning algorithm for a latent variable generative model based
on recent advances in machine learning field to address these questions.

Currently, a variety of techniques have been applied to explore the correlated
gene expression patterns to infer the regulation pathways. Among which, clus-
tering algorithms, including the nonparametric hierarchical clustering and model-
based mixture of Gaussian models, are most commonly used. These approaches
provide useful information about transcription profiles of genes and group genes
with similar profile assuming they are regulated by same pathway. However, one
key drawback of clustering is that genes are assigned to clusters mutually exclu-
sively, which does not reflect the fact that expression of an individual gene can
be regulate by multiple pathways. Other approaches such as principal component
analysis (Raychaudhuri et al., 2000), single value decomposition (SVD), inde-
pendent component analysis (ICA) (Liebermeister, 2002) are also used to analyze
gene expression patterns. However, most of the above mentioned approaches can
not effectively address the question such as what is optimal number of clusters (or
components) to be included in the model. Recently, graphic models like Bayesian
network and Boolean network have been used to modeling the genetic regulation
pathways (Friedman et al., 2000; Liang et al., 1998). One limitation of such ap-
proach is that statistical dependence are frequently confounded by existence of
latent variable, such as activation state of proteins or pathways which are not ex-
plicitly modeled by the approach. Current graphic learning algorithms can not
handle latent variables efficiently due to computational complexity.

1.2 Latent Variable Models

Latent variable models have been widely used in statistics, psychology, economics
and machine learning researches. They are also frequently referred to as genera-
tive models in that generation of observed data are controlled by latent variables.
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Popular latent variable models include factor analysis, ICA, independent factor
analysis, cooperative vector quantizer (CVQ) and probabilistic principle compo-
nent analysis (PPCA) (Attias, 1999a; Roweis and Ghahramani, 1999; Ghahra-
mani, 1995; Tipping and Bishop, 1997). As pointed out by Rowies and Ghahra-
mani (Roweis and Ghahramani, 1999), most of these model belong to a unified
linear Gaussian model and assume the form of

y=Wx+e (@D

where y is a D dimensional vector of observed data, W is a D x K “loading
matrix”, x is a K dimensional vector of latent “factors/sources” with k' << D
and e is D dimensional noise which assume Gaussian distribution e ~ A(0, A).
The key idea of these model is use latent variables as “informative lower dimen-
sional projection or explanation of the complicated observations”. When analyz-
ing high dimensional data as in our case, the advantage of using latent variable
model is several: (1) Dimension reduction. The dimension D of microarray data
range from thousand to ten’s thousand, it is very difficult and inefficient to de-
scribe the characteristic of a given sample with such high dimension. With re-
duced dimension, one describe the data more succinctly. Furthermore, reduced
dimension means reduced computation complexity and less likely to over-fit data
if we further use microarray data to perform classification. (2) Explain the corre-
lation of observed data at latent variables level. As discussed in previous section
that correlated expression patterns of genes may simply reflect the fact that they
co-regulated by same STC. By putting constrains on the covariance matrix of ob-
served data noise, the latent variable models can capture the correlated expression
patterns at latent variable level, thus provide explanation for observed covariance.
(3) Inferring state of latent variables. The distribution (or state) of latent variables
for a data point can be inferred use statistical techniques. This information is very
useful in that we can estimated states of a biological system and such information
can be used to perform other tasks, i.e. classification.

However, all above mentioned models are not suitable for answering the ques-
tions raised in section 1.1. One of our goal is to determine what biological entities
the STC may corresponding to. This requires us to recover the sources uniquely
and to determine what genes are controlled by each STC. Then we can use biologi-
cal knowledge to further infer what these STC might correspond to. This is closely
related to a machine learning topic — blind source separation. It is well known that
factor analysis and PPCA are inadequate in this respect due to the fact that latent
variables in these models are Gaussian distributed and recovered sources are sub-
jected to rotation invariance (Attias, 1999a). Conventional ICA model assumes
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non-Gaussian distribution for sources and can perform blind source separation,
but the assumptions of the model are too restrictive, i.e. assuming same number
of source and observations and noise free system. Recently developed indepen-
dent factor analysis (Attias, 1999a) try to avoid the rotational invariance of con-
ventional factor analysis by adopting mixture of Gaussian distribution for latent
variables. The idea is adopted by ICA community to develop newer versions of
EM learning algorithms to perform blind source separation. However, after re-
covering the distribution of the sources, it will be difficult to interpret the result (a
mixture of Gaussian distributions) from biological point of view.

In this research, we adopt the cooperative vector quantizer model and also
refer to it as a multiple cause model. We extend the model by performing full
Bayesian learning in order to address the questions raised in section 1.1. The EM
algorithm for learning parameters of the model was developed by Ghahramani
(Ghahramani, 1995) and was demonstrated to be capable of separating sources
uniquely. Here, we will briefly introduce the key features of the model and its
relevance to biological problem and leave detailed discussion in section 2. In
this model, we represent the signal transduction components or sources as a set
of latent binary variables which can assume on/off state. The state of a source
reflects balanced effect from upstream signal transduction system. The observed
DNA microarray data is the result of concerted regulation by these sources. When
a source is turned on, it influences gene expression pattern by outputting a weight
onto every gene on the microarray, although for most of genes the weight is zero
reflecting the fact that the given source has no influence on these genes. On the
other hand, if a source outputs a nonzero weight to a subset of genes, it indicates
that these genes are co-regulated by the source. Although the fact that this model
can be used to identify subset of co-regulated genes sounds similar to clustering,
there is a fundamental difference between the approaches because, in our model,
expression of an individual gene can be regulated by multiple sources. The main
task for our model is to learn/estimate the weight matrix associated with sources.
Thus, after learning the weight matrix of the model, we would be able to determine
what genes are regulated by a given STC and use biological knowledge to infer
what the STC corresponding to. Furthermore, with model parameters learned, we
would be able to estimate the states of STC for new data.

1.3 Bayesian Model Selection

The question (2) in the section 1.1 is of great biological interest because it ad-
dresses how information is organized inside a biological system as regulation of
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gene expression is concerned. This problem was not effectively addressed before
either experimentally or computationally due to lack of data to support such study.
With advent of DNA microarray technology, one can monitor the gene transcrip-
tion at whole genome level. With data collected under variety of conditions, e.g.
data collected while cells going through cell cycle, a good experiment sample will
contain most of the necessary information to address the issue. From biological
point view, the merge point of signal transduction does exist and potentially can
be at transcription factors/repressors level, because most pathways exert their in-
fluence on gene expression through activating or inactivating these proteins. The
question is whether it is most efficient to encode all information controlling gene
expression at this level and how can one determine the number of STC needed to
encode the information. In another word, if we set out to model the DNA microar-
ray data with latent variable model, how many latent variables should we include
in the model and whether the number reflects the most efficient information en-
coding?

This can be address in Bayesian model selection framework (Bishop, 1999;
Ghahramani and Beal, 2000a; MacKay, 1995; Kass and Raftery, 1994) which
embodies Occam’s Razor, a principle that states to select the simplest model
among those have same description power. That is, if we select model accord-
ing to Bayesian model selection frame, we automatically recover the model that
has minimum number of parameters compared to other models with same de-
scription power and recover the number of latent variables that will describe the
data most efficiently. Similarly, in information theory, minimal description length
(MDL) principle dictates that an encoding system prefers a model that has mini-
mum parameters comparing to models with same power to describe the observed
data (Hansen and Yu, 2001). The relation between Bayesian model selection and
MDL principle has been point out by several authors (Hansen and Yu, 2001; At-
tias, 1999b). Critics on Bayesian model selection is that it requires integration
of parameters which is intractable for most of practical models. In this research,
we will adopt newly developed variational Bayesian approach to overcome such
drawback and perform model selection in a efficient way (see details in section 3
and 8.3).



2 Modd

In the CVQ model, a set of hidden discrete sources s = {s1, s2, ... , $x } controls
the generation of a vector of D dimension observed variables y. Each discrete
source is an indicator vector of dimension m. Each vector s; has one nonzero
element such that s;; = 1 and s; = 0,V; # ¢« In this research, we use the
sources to model the state of signal transduction components, therefore we restrict
the sources to be binary variables, reflecting activation and inactivation states of a
component respectively. We can easily extend the current model to accommodate
multiple states of component if biological justification exists. When the source
s = 1, it will output a D dimensional weight w;, to y. We can think the source
variable sy, as a switch which, when turned on, allows outflow of weights w to y.
More formally

K
y= Z SEWp + € (2)
=1

where sy is an index function, wy, is the weight output by source si, e ~ N(0, A)
IS noise of the system.

If the weight w, is Gaussian distribution, the linear combination of weight is
still a Gaussian distribution (Roweis and Ghahramani, 1999). Thus

K
P(yls) ~ N (Z skwk,A) 3)

=1

Parameters (6) of the model: = = {m,m2,... , 7k} are the probabilities that
s, = 1; W = {w,w,,... ,wg} are the weights output by s; A = 77T is
a D x D diagonal variance matrix, where 7 is precision (inversed variance) of
observation y.



3 Variational Bayesian Learning

One of our goal is to determine what model structure best describe the data. In this
project, one of the main concerns is the number of sources. LetY = {y™;n =
1,2,...,N} be observed data; M = {M;;: = 1,2,... , K} be a set of possible
model structures, where A, is a model with 2 hidden sources. We can use Bayes’
rule to calculate the posterior probability of each models.

P(Y | M;) P(M;)
P(Y)

P(Mi]Y) = (4)
Then we can select the model that has the highest posterior probability. The
full Bayesian treatment of model selection requires calculating the evidence P(Y | M;)

by integrating out all possible setting of parameters 8 for a given model

P(Y|M) = [ P(Y16,34)P(6]3£)a9 )
[7

However, the integration is intractable. We can use the variational approxi-
mation to achieve the goal, which takes advantage of the fact that log marginal
probability of observed data £(Y") * results from integrating out hidden variables
(H) and parameters (8) and can be bounded below as following

LY) = WP(Y) 6)
_ 1n/ZP(Y,H|0)P(0)d0 )
B P(Y,H|0)P(6)
= m/ezH:Q(H,e) O(H.0) a6 (8)
P(Y,H|0)P(6) ,
;zA§MR®m Sie 0=F@ O

for any distribution Q(.) (Attias, 1999b; Ghahramani and Beal, 2000a) . The
inequality is established by Jensen’s Inequality. We can demonstrate that the
difference between £(Y) and F(Q) is the Kullback-Leibler divergence between
Q(H, 8) and true posterior P(H, 8|Y).

LFor the purpose of notation simplicity, we omit conditioning on model ;. Most of proba-
bilities P(.) mentioned henceforth in the report are conditional probabilities P(.|M;) implicitly
conditioned on a given model.



InP(Y) — /‘)XH:Q(H,H)ln P(Yég{'?gf(e)de (10)
=InP(Y) —/GXH:Q(H,G)In P(Hé((’gl)];w)de

=InP(Y) — /XH:Q(H 6)1n %d& —In P(Y)

-/ > a0l ?Igﬂef;) KL(Q | P) >0 (11)

Thus, maximizing F(Q) is equivalent to minimizing KL(Q || P). When
Q(H,8) = P(H,0|Y), at which point KL(Q || P) =0, £(Y) = F(Q) and one
can use conventional EM algorithm (Dempster et al., 1977) to estimate parameters
of the model . In many cases, estimation of the posterior distribution P(H, 8) is
infeasible, then one can use an arbitrary distribution Q(H, ) as approximation
of posterior distribution. More specific, if we adopt variational approximation
approach 2 and restrict the Q(H, ) to be factorized as Q(H, 8) = Q z(H)Q4(8),
we have

/9 > QU0 P Wég{'f’gf ©) 46 (12)
. /9 > Qul6)Qu(H)1a P g&g)'g)jé‘)’ a6 (13)
— [ d6Qu(6) [; Qu(H)ln” g_;(fl')" ) {1 ci(% (14)
- (o), ),
= Fo— KL(Qo(0) | P(8)) = F(Qu(H), Qs(6), Y) (16)

where (.) 4, is to take expectation with respect to distribution Q(.)
To maximize the F(Qu(H), Qe(8),Y) with respect to Qu(H) and Q4(8),

2See section 4.
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we have 3

Qn(H) o 6$P<1HP(Y7H|0)>Q9(9) 17)
Qp(0) o P(@)exp(In P(Y,H|0))y, m) (18)

As we can see from (17) and (18) that Qu (H) and Qg(8) are coupled. We can
use EM like iterations to update two distributions and maximize the 7(Q(H), Q(8),Y)
function.

e VBE step
Maximize F(Qu(H), Q¢(80),Y ) with respect to @ z(H) using the expected
natural parameters under current Qg(8).

e VBM step
Maximize F(Qrn(H), Qe(8),Y) with respect to parameter distribution Q¢(8).
As indicated by equation (18), this amounts to updating the posterior with
expected sufficient statistics under @ 7 (H).

Iterate through the VBE step and VBM step until F(Qu(H), Qe(0),Y) con-
verge. Notice that maximizing F(Qu(H), Qe(8),Y) is only maximizing the
lower bound for marginal log likelihood £(Y). How tight is the lower bound
depends on how well the distribution @ (H, ) approximate posterior distribution.

3Described in detailed in section 6 and 7.
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4 Mean Field Approximation

As discussed in previous section, maximization of F(Qx(H),Qe(6),Y) cor-
responds to minimization of KL divergence between the posterior distribution
P(H,0|Y) and approximation distribution Q(H, #). For many practical mod-
els, including the model in this research, exact calculation of the posterior is in-
tractable. One can use restrict distribution Q(H, #) to approximate posterior. A
commonly used approach is the mean field approximation (Jordan et al., 1998).
The intuition underlying the mean field approximation is that, when the distribu-
tion of a variable v; is dependent on many other variables V., = {v;;j # i},
change of one individual variable of V;.; may have limited effect on v; due to
influence of other variables. That is, v; is surrounded by a “mean field”. This
apparently decouples v; and V4; and the joint distribution of the variables can
be factored and updated iteratively. Haft et al (Haft et al., 1997) demonstrated
that the K'L(Q||P) for any two arbitrary distributions Q(X) and P(X), where
X = {Xj,X,,...,Xx}, can be minimized model-independently by adopting
a mean field approximation. More specifically, for any P(X) and Q(X), if the
distribution (X)) is restricted as following factorized from

K
Q(X) = [J@i(Xy) (19)
i=1
one can minimize K L(Q||P) iteratively with respect to Q(X;) while fixing others,
Q(Xz). Define X2, = {Xj, 7 # ¢} be the set of all X except X;, then Q(X) =
Q(X,)Q(Xﬁé,) Rewrite I&rL(QHP) as
- B Q(X)
KL(Q||P) = /Q(X)ln P(X)dX

Xi S Xz

P(X)

= /X/X Q(X:)Q(Xjz) (In Q(X;) + In Q(Xj2:)) dXidX iz
i i
—// Q(X)Q(Xjzi) In P(X)dX;dX ji
Xi S Xjzi
= /Q(Xi)lﬂQ(Xi)dXi+/ Q(Xjzi) In Q(Xj2:)dX iz
X; Xj#i
—// Q(X)Q(Xjzi) In P(X)dX;dX ji (20)
Xi S Xjzi
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To minimize K L(Q||P) w.r.t Q(X ), we need to further place constrain over
Q(X;) such that [ Q(X,)dX; = 1, which can be achieved by Lagrangian opti-
mization. Define Lagranglan function

/Q(Xi)an(Xi)dXi+/ Q(Xjzi) In Q(Xj: ) dX s
X; Xj#i

_ / / Q(X)Q(X;:) In P(X)dX;dX j5:
Xi S Xjzi

—\ </Q(X,»)dX,» - 1) (21)

take derivative and set to zero

oL
)~ % [, @ Qe
0
e / o Q(Xi)Q(X;i) In P(X)dX;dX jx;
0
s ([ dX‘1>}
= InQ(X;)+1— (InP(X)) QX —A=0 (22)
solve for Q(X;)
Q(Xi) = meiﬂp{ﬂﬂp(x))mxm)} (23)

To solve for exp(1 — X), we time both sides by itself and integrating both sides
over space of (X;), we have

exp(l — ) = /); exp {<1n P(X))Q(X#i)} dX; (24)
then
exp 4 (Iln P(X)) o
Q(X,) _ { Q(Xj#z)} (25)
in exp {<1n P(X))Q(X#i)} dX;

Thus, by iterating through Q(X;);: = 1,2,... , K, we can achieve overall
minimization of K'L(Q||P).
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5 Priors

To perform variational Bayesian learning, we need the priors for the parameters.
Our model consists of parameters «r, W and A. We choose conjugate priors for
these parameters to facilitate calculation of posterior. We follow the strategies
used in the research of variational Bayesian PCA and mixture of factor analyzers
(Ghahramani and Beal, 2000b; Bishop, 1999) and define the priors as following

1. For each 7, which is a Bernoulli parameter, its prior is a Beta distribution
7 ~ Beta(a, 3) (26)

Thus, if our model has K sources, we would need A corresponding prior
and P(7) is of form

P(m) =[] P(m) (27)

2. The loading weight W can be represented as a D x K matrix where each
columnwy; k=1,2,..., K isthe weight output by source s;. The P(w|vx)
assumes Gaussian distribution

wi ~ N(0,7:'1) (28)

where v, = (% is inverse of variance (precision) for column & of matrix,
which follows a gamma distribution

Y& ~ G(vklay, by) (29)
G(zla,b) is a gamma distribution in form p(z) = b*z* texp{—bz}/T(a).
Then
K
P(y) = Hg(7k|a%bv) (30)
k=1

Thus, the prior for the weight matrix W is governed by a vector of v =
{71,792, --- .7k } and is of following form

K N e
PWiy) =T (55) " can (= Hllwel?) (31)

14



3. As in variational Bayesian PCA model, we adopt isotropic variance. (for
the sake of simplicity or because PPCA use this to constrain W to be eigen-
vectors?). The system noise o2 is governed by a gamma prior distribution.
Let 7 = 072, then

P(r) = G(rler, dr) (32)

The graphic representation of the model is shown in Figure 1.

Figure 1: Directed graphic representation of multiple cause model. The square
corresponds to an individual data point which contains observed variable y and
latent variables s which have different instantiation for each data point. W, «, 7
and «, (3 are system variables.
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6 VBE

As mentioned in section (3), we need to use an EM-like algorithm to iteratively
update the distributions @ ;(s) and Q¢(8) to approximate the true posterior distri-
bution. By doing this, we will minimize the KL divergence between the true poste-
rior and approximate distribution and maximize the lower bound for the marginal
log likelihood of observed data. In this section, we will discuss how to update the
approximate distribution for latent variables.

As we can see from equation (15), to maximize F(Qr(H), Qe(8),y) with
respect to Q@ (H) is equivalent to maximization of the first term of equation (15)

_ L Py, H|6)
7o <2H:QH(H)1 Qn(H) >Qe(9)

Inside the <>, the term is similar to E step of conventional EM algorithm,
which contains the expected complete data likelihood w.r.t @ ;(H) and entropy
of @u(H). However, we need to further take expectation over the Q¢(8). Ac-
cording to the theorem by Ghahramani and Beal (Ghahramani and Beal, 2000a),
if the complete likelihood of P(y, H|@) belongs to an exponential family, we can
rewrite the formula as

o <ZQH(H)IHf<y,H>g<e>e:cp{¢<e>Tu<y,H>}> (33)
H Qs(6)

Qu(H)

Y O f<y,H>g<e>;x5({fl<)e>%<y,ﬂ>} -

where $(8) in equation (33) is a vector of natural parameters and ¢(8) in equation
(34) is the same vector taken expectation with respect to QQ¢(€). Thus, taking
expectation of complete likelihood w.r.t Q z( H) can be done by plugging in ¢(8)
and proceeding as conventional E step.

In conventional EM algorithm, if we set Q(H) = P(Hly,#), to maximize
(34) is to maximize log likelihood £(8). In other latent variable models, such
as the factor analysis or probabilistic PCA, the posterior distribution of hidden
variables can be solved analytically. However, in our model, the estimation of
true posterior P(H |y, 8) is intractable. One more time, we resort to variational
approach to approximate the true posterior. More specifically, we decouple the
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hidden variables and factor the Q (H ) as following

K
Qu(H) =[] Qu(H:) (35)

k=1
The hidden variables in our model are the source s = {s1, sg,... , sk }. Thus,
Qu(s) = 5:1 Qu(sk). The parameters of our model are: mx, wy, and A, where

m IS probability s = 1, wy is th weight associated with s, A = 77T isa
diagonal variance matrix of noise. Thus, we can write the complete log likelihood
of an individual data point of our model as following

In P(y,s|6) = InP(s|0)P(yls,0) (36)
K

= Z (selnmg + (1 — sg)In(l — my)) — %ln Al

k=1

T
1
) (y - ZSka) AT (y - Z Skwk> +c
k

k

K
_ _M S
= Z (ln = Wk)sk + In(1 7rk)> 5 In |A|

k=1
1 _ _ _
) (yTA ly —2yTA~! zk: SEWi + zk: Z sksng/\ le)
J
+c (37)

where c is a constant. We can see thatIn 774, In AL AL, A-'Wand WIA-'W
are the natural parameters
Taking expectation w.r.t @ (s) and Qg(8) respectively as indicated in equa-
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tion (15) ¢

K
< (ln Sk—l—ln(l —7Tk)> - —1n|A|>
— 1— 7Tk
k=1 Qu(s)Qe(6)
1
5 ( TA Yy — 2yTA_1 Z SEWg —|— Z Z Sijng_le‘) > (38)
k kg Qu(s)Qe ()
K 1
— Z <ln e > <5k>QH(s) + (In(1 - 7T’“)>Qe(‘9)) ) (In |A|>Q9(9)
k=1 k (9)
1 T /A— T /=
—5\Y (A 1>Q9(9) y—2y' (A 1>Q9(9) Z (58) @ p1(s) <W’“>Qs("))
k
1 _
) ;ZMMQH(S) (Wi A le>Q9(9)) +e (39)
j

Thus, in VBE step, we need to optimize the (si),, () and (sk55)q, ) - We
define a mean field parameter (si), . o) = Ak aNd (ss;) = AeAj + dwi(Ae — A7),
We can rewrite the Fg and maximize w.r.t A

K
TE 1
In > Ak + (In(1 — 7)) — —(In|A])
2 < (1 —m) 00(8) Qe(8) 9 Qe(8)
1
2

y"' <A_1>Q9(9) y—-2y' <A_1>Q3(9) Z Ak <Wk>Qe(9))

k

=3 (el Ag + (1= M) In(1 = Ap)) + ¢

k=1
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_% ;Z(,\k/\ wi AT W), ) Z% AZ)<WgA_1W’f>Qe(~9))
J

(40)



Take derivative w.r.t A,

_3.7:@ = <ln Mk > —1In Ak
6/\k (1 — 7Tk) Qo (8) (1 — /\k)

+y! <A_1> Qs(0) (W) Qs (6 Z)‘ gA_le>Q9(0)
J#k

1

~3 <W£A‘1wk>Qe(9) (41)

Set to zero, we have 4

1 Ak <1 Tk >
11 = 11
(1—A) (L =)/ 9,0

A g0 Maute = 2 A5t () g0 (A )gu00))
I#k

1 1
_§tr <<WkW£>Qe(9) <A_ >Q9(9)) (42)

where ), can be solved using a logistic function. Thus, we can optimize Q p(sx)
analytically and we can update @ (s) by iteratively optimizing A, until Fe con-
verge.

To update A using the equation, we need to calculate the expected natural
parameters. Since the natural parameters are from decoupled distributions ° re-
spectively, we can take expectation independently.

As mentioned before, 7, k = 1,2, ..., K isaBernoulli parameter and Qg ()
is a beta distribution Qg(7x) ~ Beta(éu, Bx). Therefore,

In Tk > _ ! (Oék—l-ﬁk)
< (1 —m) / I'(6)T (5k)
Tk ap—1 3, —1
In <m> Tk (1 — Wk)ﬁ dmy,
= T(ax) — (G (43)
4We rearranged <wZA—1wk>Q9(9) to tr (<WkWZ>Qe(9) <A—1>Q9(9)) so that we can take

expectation over W and A~ ! separately.
5See Section (7) for detailed discussion

19



wher ¥(z) = 22L@) s digamma function. Similarly,
oz

1 ~ 3 -~
(In(1 —m)) = / Mln(l — Wk)wf’“_l(l — Wk)ﬁk_ldﬂ'k
o T(6w)T(B)
= U(B) — Y(axr + i) (44)
As for (wi )y, ), We directly plug in the mean & of current Qe(wy ), which

is a Gaussian distribution. For <Wng>Qe(9)

(WiWi ) g0 = ) (1) + 20 (45)

where ¥ is mean of column % of current Q(W) and ={*) is the covariance

matrix for the column. Similarly <ij,f>Qe(9) can be calculated as
" . " T .
<ijg>Q9(9) = (w;) <Wg> = mg) (mvf)) + ng) (46)

For <A—1>Q9(9), we can plug in the mean of Q4 (7) (See equation 59) as

(AT =(n) I (47)
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/7 VBM

7.1 Variational Approximation of Parameter Distributions

As discussed in section (3), the goal of variational Bayesian learning is to lower
bound the marginal log likelihood of data £(Y'). We recover £(Y) by minimiz-
ing the KL divergence of true posterior distribution for parameters P(8|Y) and
approximation distribution @(€). However, to calculate the KL divergence re-
quires evaluation of true posterior distribution of parameters which is infeasible.
Therefore, we need to rewrite the KL divergence as

KL(Q(0)||P(0]Y)) = /Q P(8 |3){)
i QO)P(Y)
= /Q P(6 Y)
_ /Q Q )—|—1nP(Y)ZO (48)

Since In P(Y) is a constant, thus minimizing K'L(Q(8)||P(6|Y)) divergence
is equivalent to minimizing the divergence between distribution () and joint
distribution P(8,Y ) until the difference equals — In P(Y), at which point K L(Q||P) =
0. As demonstrated in section (4), we can minimize the KL divergence between
the two distribution by adopting mean field approximation. More specifically, we
restrict Q(0) to be following form

Q(G) = Q(ﬂ7W77aA) (49)
= Q(mQW)Q(v)Q(A) (50)

Then we can achieve overall minimization of KL by iteratively minimizing KL
divergence with respect to factorial distributions (). The optimal Q(#8;) is of
form

eTp { <1Il P(ev Y)>Q(9j¢i)Q(5)}
[ exp {<1n P(evY»Q(G#i)Q(s)} db;

where the complete likelihood can be analytically solved. In our case, we need
further include latent variables into consideration. After VBE step, we already
updated @(s) and obtained the expectation of instantiation of latent variables S =

(51)

Q(8;) =
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{(s");n = 1,2,..., N} for the data points w.r.t distribution (s). This enables
us to plug in these values into the complete likelihood in equation (51) to derive
following results:

P(Y,S,0) = P(Y|S,0)P(S|#)P(8)
= P(Y[S.W,A)P(S|7)P(m)P(W|y)P(v)P(A) (52)

take expectation of log complete likelihood w.r.t Q(8)

(In{P(Y|S, W, A)P(S|m) P(m) P(W|7)P(7) P(A)})g, ) (53)

— [ emew)ee)Q()n [T] POl (") W, A) | dmaWyd

—|-/Q(s)1nP(S|7r)dS

—I-/Q(ﬂ') In P(m)dm

+ [ QW)Q() I P(WImaw

+ [ Q)P

-|-/Q(A)1nP(A)dA (54)

where r is indicator for data point.

With this form, it become obviouse that, when minimizing K L(Q(0||P(Y,8))
using equation (51) with respect to individual parameter distribution Q(6,), many
terms unrelated to Q(6;) become irrelevant during normalization process and can
be dropped. Eventually, the optimal distribution will look like

Q(6;) x exp { <ln > +In P(@i)} (55)
Q(8ji)

which is an approximate posterior distribution P(6;|Y).

N

[T 2w sm), W, A)

n=1

22



The factorial distributions is of following form

K

Q(m) = [[ Beta(mla, Be) (56)
k=1
D

QW) = [[N(waid,5) (57)
d=1
K

Q) = []g(ulah,bh) (58)
k=1

Q(r) = G(rler,dy) (59)

Since all of the factorized distributions ¢(#;) and their prior distributions be-
long to exponential family, we can take advantages of characteristics of exponen-
tial family distributions during updating the approximate posterior distributions.
If the prior distributions for () for our model belong to exponential family and
can be written as

P(6|n,v) = h(n,v)g(8)"exp{(8) v} (60)

where n and v are hyper-parameters. Furthermore, the complete data log likeli-
hood is of the form

P(y,sl0) = f(y,s)g(0)exp{¢(0)u(s,y)} (61)

where f, g and « are functions defined in exponential family and ¢ are a vector of
natural parameters. According to Ghahramani and Beal (Ghahramani and Beal,
2000a), at the maxima of F(Qu(H), Qas(6),y), Qs(8) assume following form

Qo(8) = h(7],2)g(8)"cxp {H(8)" D} (62)
where i = n+n, v = v+ 30, u(y;) and u(y,) = Equ(s)(u(si,y,)). In

)
another word, we use expected sufficient statistics under the @ ;(s) to update the
approximated posterior distribution Q4(8).
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7.2 Update Q(m)

Once the we obtain expected instantiation of latent variables, it is straight forward
to update Q(n) in that s d-sparate = from other variables. To update the each
of Qq(m) which is a beta distribution, we can use expected sufficient statistics
<3k>QH(s) as calculated in section 6 combining with prior Beta (o, (%) to update
posterior

N N
Qo(mr) ~ Beta (ak + Z <SZ>QH(5) 0+ N — Z <SZ>QH(5)> (63)

N N
~ Beta <ak+ZAg,5+N—ZAg> (64)
n=1

n=1

where (s}) = A7 is expectation of source s, = 1 for data point ».

Qmu(s)
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7.3 Update Q(W) and Q(v)
To update the Q (W), we have

QW) x exp {<1nP(Y|s,w,A)>Q(9#w) + <lnP(W]y) >Qm} (65)

where Q(6,+w) is the joint distribution of all parameters except W; the W is a
D x K weight matrix with each column wy being a D dimensional weight output
by source s;; the s is K dimensional column vector of sources; the A = 7711
is a diagonal covariance matrix for y and 7 inverse of variance (precision) of
observation.

7.3.1

Since the A is diagonal, each component of y is independent of others. Thus, we
can write In P(Y|S, W, A) as

N D
InP(Y|S,W,A) = In HHP(yg|sn,w,T)] (66)

1 D N 1 K 2
x §ND InT + Z —§T (y;; — Zszwdk) (67)

k=1

Define w, as a column vector corresponding to the dth row of weight matrix
W and s" be the vector of sources for the data point ». Then, we can rewrite
Sor L stwae = s"Twga. Then equation (67) is as
1 P X1
n n 2
§ND1HT—|-;Z [—57 (y7 —s"Twy) } (68)

1 n=1

7.3.2
As discussed in section (5), the prior P(W |~) is of the following form:
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K

P(Wly) = [[ P(wilw) (69)

k=1

where wy, is column of the weight matrix.

Our model further defines that covariance matrix for each column of W is of
Yk = 4711, as indicated by equation (28). Then, each component of w;, is inde-
pendent of others and the prior P(W) can be fully factorized. If we define w, as a
K dimensional column vector corresponding to dth row of the W, it’s covariance
matrix will be of the form 2{? = ~~'I, of which the diagonal components are
v vst, .., yk . Here the 4, is the inverse of variance of kth column of W.
Then, the log of prior In P(W) can be rewritten as

D
ImP(W) = In|[]P(wdZl) (70)
d=1
D
= ) InP(waZY)
d=1
< 1 (d) 1 7 (d)—1
x Y —5 (3] - Swis w, (71)

d=1

Combining equations (67) and (71), we can see that both parameter prior and
data likelihood are Gaussian distributions. It naturally follows that we recover
the Q(W) as Gaussian posterior distribution. Since likelihood function (67) is a
linear regression function, updating @ (W) turns out to be well defined problem of
Bayesian learning for parameters of linear regression model (Box and Tiao, 1973;
Tanner, 1996). Rewrite equation (65) as

D[N
ImhQ(W) « Z [Z {—%T (v; — S”de)z} _ %wfﬁfﬁ)—lw(i] (72)

d=1

n=1

Now it is obvious that we can update (W) row-wisely, because each com-
ponent of observed data y, is linear regression with independent variables s and

26



parameters w,. We have

N

— Z %7‘ (yg — S”de) (yg — S”de) — ;wngj)_lwd

n=1

= = o {(y —s""Wa) + 8" (Wa — wa) } {(yF — " Wa) + "7 (Wa — wa) }

N
1 - 1
—3 (Wqg — Wy) T T nél s”s”T (Wqg — Wq) — §Wd E( d)—1

-1
where wy = (EN_ s”s”T) SN smyn is the least-squares estimation of w.

n=1 n=1
Note that (yg — SnTV/‘\Id)SnT(V/‘\Id — Wd) =0= SnT(V/\\Id — Wd)(yg — SnT‘/K\fd). To
derive the posterior distribution, we only need to include the terms containing w,
then

_ _%(Wd_mw))Tg(d)—l (wa — 1(®) (75)
where
(d) al n nT -
¥, = by <T>Z<S S
= (st + 013 ) )
w <@, =
m{) = 3, (1)) (s") i (77)



Thus, we have

QW) = ﬁ@(wd@f) (78)
d=1
- ﬁ/\f(rhfﬁ,f]f?) (79)

Once we update Q(W), it is straight forward to update Q(~) because W d-
separate v from other variables. Recall that v = [y, 72,... ,7x]7, then the pos-
terior for individual element ~; is as following

Q) o eflfp{ <1HP(Wk|’Yk)>+1HP(’Yk)} (80)
= " Veap{—=byutyCexp {—éiwgwk}
D _ 2
_ wgmﬂ 1)61,]3{_ (b'y—l' ||w2k|| >7k} (81)
= g(7k|avkvgvk)
then
K .
QY = []90(wlak bw) (82)
k=1
D
Uy = Gyr+ B (83)
N 2
b = ey () -
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7.4 Update Q(7)

Once we have estimated Q (W), we can update Q(7).

N
Q(7) x exp {ln P(r) + <1n H P(y"|s", W, T)> } (85)
Q(05#7)Q(s)

n=1

inside the curly bracket and omit expectation temporarily

(cr —11n7'—d7'—|-z< lnT——y —WS)(y”—Ws”)>

R [CEE-

_ [ {df LY wey —Ws“>}] (#6)

n=1

= {(cf + NQ—D — 1) lnr}
L N
- !T {dT + 5 2:;(||y”||2 —2y"Ws" + tr (W Ws"s"") }] (87)

We can see the kernel of a gamma distribution in equation (87). The first
bracket is shape parameter and second bracket contains shape parameter. After
taking expectation w.r.t Q(8; # 7)Q(s), we have

Q(r) = G(rlé-, d;) (88)

where

ND
67- = Cr —|— T (89)

d-=d + 5 Z{ny 12— 29" (W) (s") + tr ((WTW) (s"s"")) J90)
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8 EnsembleLearning

In previous two sections we have described methods to update different distribu-
tions. In this section, we will address sequence of updating distributions, moni-
toring convergence and dimension reduction during variational Bayesian learning
process.

8.1 Sequential Update distributions

Apparently, the distributions of latent variables and parameters are coupled and
we need to update them in a right sequences. We should use following sequence:

s)

)

v)

Q(

Q(
QW)
Q(
Q(7)

a » w0 DN

8.2 Monitoring Convergence

In variational Bayesian learning, we maximize F(Q(H), Q(6),Y), which is the
lower bound of log marginal likelihood, at each iteration with respect to different
distributions. Therefore, the F(Q(H), Q(8),Y) should monotonically increase
until converge to a local maxima. One advantage of VB learning is that we can
monitor the process of converging. Here we can rewrite the equation (15) as

FQH),Q(0),Y) = <ZQH<H> EJY(H')”)> (%) e
Qs (0)

6(0)
= (In(Y|S,W,A)) + (In P(S|m)) — (In(Q(S))

)
+ (Il P(mr)) — (lnQ(m))
+(In P(W)) — (In Q(W))
+ (Il P(y)) = (ln Q%))
+ (I P(7)) = (InQ(7)) (92)



where

(n(Y[S,W.A) = ~~ln(am) + 7 (nr) — 237 {y Ty — 2y (W) (s7)

iy = 30 (Y e} o

(nQ(S)) = Y > (Melndg+ (1= X)In(1 - A)) (95)

(lnP(m)) = B< { ak+(gl;))7rgk_l(l—7rk)ﬁk_l}>

k=1

>

1

— { InT(a + Bk) — InT(ar) — InT(Gk)
k=1

+(ox — 1) (Inmg) + (Gp — 1) (In(1 — mx)) } (96)

LO(m)) — = N F((karBNk)ﬁozk—l )t

K

_ Z { InT(dx + Br) — InT(ax) — T (k)

k=1

+(dk = 1) (lnmg) + (B — 1) (In(1 — m4)) } (97)

D D
(InP(W)) = <—51n(27r) + Elnfyk — 72—kwgwk>
k=1

= {—g In(27) + g (In~g) — <’Y2—k> <w£wk)} (98)

=1

S

kol

31



(InP(v)) =

(InQ(v)) =

(In P(7))

<c,. Ind. 4+ (¢, —1)In7 —d,7—In F(c,.)>

erlnd, + (¢ — 1) {ln7) —d, (7) — InT(e;)
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(lnQ(7)) = <ET Ind, + (¢ —1)InT — d.7 —Iln F(ET)>

— ¢ lnd, + (¢ — 1)({lnT) — d. (ry —InT'(¢;) (103)

All expectations are taken w.r.t. correpsonding variational posterior distribu-
tions. Note that (Inz) = ¥(a) — In(b), where z ~ G(z|a,b).

8.3 Model Selection and Dimension Reduction

We have discussed in the section (3) that we should choose a model A; that has the
highest poterior probability among the candidate models. Bayesian model selec-
tion automatically embodies Occam’s Razor in that complex models is penalized
by assigning lower posterior probability (MacKay, 1995). When selecting models
according to Bayesian approach, in our case is the number of latent variables, we
will automatically recover the model with minimum number of latent variables
that explains data well. One way is to select models according to equation (4)
by discretely testing models with different number of latent variables K" up to a
maximum number, e.g. the number of dimension D — 1. However, such discrete
search is quite computational expensive. To avoid such search, MacKay and Neal
introduced the concept of automatic relevance determination (ARD) that can be
used for Bayesian model selection. The technique has been successfully applied
to determine the number of latent variables for different models in several recent
researches (Lawrence and Bishop, 2000; Bishop, 1999; Ghahramani and Beal,
2000b).

We will explain the basic idea of ARD applied to our model using a hypoth-
esized example. Suppose we start with a large number of latent variables, say
D — 1, and begin to maximize the F(Q(H), Q(6),Y). If not all latent variables
are needed to explain data, we will find the the column of the posterior distribution
of weight matrix corresponding to the unused source will shrink toward the mean
of prior of column which is zero. Smaller weight in the column of loading matrix
will leads to peaking of corresponding posterior distribution of hyper-parameter ~;
at larger value, indicating w; is almost invariant. The latter will cause the weight
to further shrink toward prior mean during next iteration of updating loading ma-
trix. Thus the weight of the whole column will quickly deminish toward 0 which
effectively shut down the source.

Overall, ARD approach provide another advantage for the model selection -
avoid discrete search for the models. In some case, the saving may be tremen-
dous. For example, for a mixture model with A potential components, discretely
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selecting model from the space of all possible combination of components will
be prohibitively expensive. Variational Bayesian approach enables us to use ARD
technique to achieve the goal of dimension reduction and model selection.
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9 Summary

In this research, we have developed a variational Bayesian learning algorithm for
a latent variable model - cooperative vector quantizer model. Although the main
motivation in this research is using the model to simulate the biological pathways,
the model itself has wide application in machine learning and signal processing,
e.g. image separation and blind source separation. As demonstrated by previous
researches (Ghahramani, 1995; Dunmur and Titterington, 1997; Miskin, 2000),
the model is capable of identify the weight matrix uniquely. Thus, we can use the
model to estimate what genes are regulated by a given signal transduction com-
ponent by studying the weight matrix of the model. Combining such information
with biological knowledge, we can potentially map the latent variables to biolog-
ical entities. Especially, the taxonomic knowledge regarding proteins from the
Gene Ontology database will be very useful in the task of mapping latent vari-
ables to biological pathways. Furthermore, once having learned the parameters of
the model, we can estimate the expected states of latent variables for each DNA
microarray data point. Thus, we can potentially describe a system with the states
of pathways which will provide insight to many interest biological questions, e.g.
the mechanisms of diseases etc. We can also use this information to perform clas-
sification or diagnosis. With reduced dimension, a classifier is less like to over-fit
the data and, therefore, generalizes well.

We have further extended the model to automatically determine the number of
latent variables needed to efficiently explain the generation of data. This address
the issue of how information is organized in the cells - a question that has not
been well studied before due to the limitation of data and method. We believe the
our model can potentially address the question efficiently and provide insight into
cellular system from system biology point of view. In next part of the report, we
will present the results of using the model to study the DNA microarray data and
discuss the strengths and limitations of the model.
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