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Abstract 
 

   Whole-sample mass-spectrometry proteomic profiling based on SELDI-TOF-MS 
technology has lead to many promising results in detection of various types of cancer and 
other diseases. However, the majority of SELDI-TOF-MS disease studies performed to this 
day do not attempt to identify protein species responsible for these promising results. The 
limitation of the protein identification is that it requires secondary lab-based analysis which 
increases the cost of the study, and that at the end, the identifications may not lead to any 
new biologically important result. To address the problem, our work focuses on 
computational approaches that provide early insights on the identity of putative biomarker 
signals found with a SELDI-TOF-MS instrument. We present two computational methods 
to achieve this goal: (1) labeling of mass-spectra peaks corresponding to high-abundance 
protein species, and (2) evaluation of disease-specific signals with the help of profiles from 
past case/control studies. The key benefit of our methods is that they can provide early 
characterization of discriminative signals while working directly with whole-sample 
profiles. As a result, they can be used to filter-out some of the MS signal candidates so that 
subsequent identification procedures are directed towards analysis of signal species that are 
likely to yield new information.      

 
1  Introduction 
 
Whole-sample mass-spectrometry (MS) proteomic profiling technology based on surface 
enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) 
provides an inexpensive assay with a great promise for screening for the presence of a disease, 
and/or for the assessment of benefits of different patient-management interventions. The potential 
efficacy of serum protein profiling for cancer classification has been demonstrated on multiple 
studies, including human breast (Li et al. 2002), colon (Watkins et al. 2001), head and neck 
(Wadsworth at al. 2004), lung (Zhukov et al. 2003, Xiao et al., 2003), ovarian (Petricoin et al. 
2002a, Jones et al. 2003), bladder (Vlahou 2003,2004) and prostate cancer (Wright at al 1999, 
Adam et al. 2001, Petricoin et al. 2002b).  Other promising sample sources include urine 
(O’Riordan et al. 2004), saliva (Hu et al. 2005) and spinal fluid (Sickmann et al. 2002).  
 
The existence of high-accuracy classification models for whole-sample low-resolution SELDI-
TOF-MS profiles, aside from their role in disease detection, is important also for biomarker 
discovery – the selection of one or a small set of MS profile peaks capable of discriminating 
between case and control samples. In general, a peak biomarker can be associated with any 
protein species present in the sample that discriminates well between case and control profiles in 
the study. However, to fulfill the ultimate goal of discovery proteomics it is critical to assess the 
identity of the biomarker peak so that follow-up studies and validation of the signal can be 



 2

conducted. The protein identification task is typically addressed through secondary lab-based 
analyses, most often 2D gel electrophoresis followed by the mass-spectrometry TOF-TOF 
sequencing and identification steps. Unfortunately, this process incurs additional costs and delays, 
and precious resources may be spent on identification of biomarker signals that are unlikely to 
bear any fruits.  Our hypothesis is that key initial insights on peaks in whole-sample profiles and 
their potential usefulness as biomarkers can be obtained early and relatively inexpensively from 
the low-resolution proteomic data with the help of prior knowledge and/or data collected for other 
case/control studies.   
 
In this work we present and describe two computational methods that let us obtain early insights 
on potential biomarker-bearing peaks: (1) labeling of peaks corresponding to species with high 
expected abundance in the sample specimen, and (2) evaluation of potential disease-specific 
signals with the help of profiles from past case/control studies. Our objective is not to devise 
procedures that yield complete information about every peak; instead we seek as much 
characterization as is possible given the limits of the SELDI-TOF-MS technology and available 
external knowledge. Such a computational analysis can provide a good initial understanding of 
discriminatory performance of MS case/control profile signals and can be used to steer the 
application of follow-up protein identification procedures so that these are applied only to signals 
that are likely to reveal some new information.   
 
2   SELDI-TOF-MS profiling  
 
Surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-
MS), developed by Ciphergen Biosystems, Inc. (Fremont, CA), is used for the mass analysis of 
compounds such as proteins, peptides and nucleic acids (with masses up to 200 thousand Daltons) 
within solutions such as serum, urine, or cell lysates. Profiles may be determined for whole sera 
using whole serum (‘neat spotting’), or using fractionated samples, with profiles determined for 
each sample fraction.  SELDI operates by capturing compound(s) of interest on a chip. The 
surface of the chip possesses affinity characteristics such as ion-exchange, hydrophobicity, or 
antigen/antibody. Compounds of interest then dock onto the surface through these affinity 
interactions. Contaminants are removed by washing. After addition to the chip of “energy 
absorbing molecules” (aka, matrix) the remaining bound substances are analyzed under high 
vacuum by laser desorption/ionization time of-flight mass spectrometry. The time of flight 
through the vacuum is converted to provide inferred molecular weight information.  An example 
of a profile is shown in Figure 1. 
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Figure 1: A typical SELDI-TOF-MS profile showing mass to charge [m/z] ratio versus relative 
ion intensity. Note the relative abundance of species below 20,000 Daltons.  
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Profile data obtained from the low-resolution SELDI-TO-MS instrument are often corrupted and 
subject to multiple systematic biases and sources of error.  These problems are addressed during 
the preprocessing phase that precedes the interpretive data analysis. Profile preprocessing 
includes computational steps taken to remove a variety of noise signals in the data with the 
expectation that most of the useful information content carried by the profiles is preserved. MS 
profile pre-processing consists of: profile quality control, baseline correction, variance 
stabilization, normalization, alignment and profile smoothing. The details about these methods 
can be found in Coombes et al. (2005, 2006) or Hauskrecht et al (2005).    
 
Differential and classification analysis 
 
A typical disease study involves two patient groups: case (disease) group and control (normal) 
group, and their corresponding MS profiles. The aim of the interpretive data analysis is to identify 
signals in spectra that carry the differences in between the two groups. Univariate differential 
analysis (Baldi & Long 2004, Hauskrecht at al 2006) considers individual features (peaks) and 
their impact on the case/control discrimination, while the multivariate classification analysis (Ball 
et al 2002, Qu et al 2002, Yasui 2003, Hauskrecht et al 2005) examines the discrimination 
potential of combination of multiple peaks (peak panels).  
 
Figure 2 shows a statgram built for the pancreatic case/control study (Hauskrecht et al 2005). The 
differential potential of a peak is measured by the –log of the p value of the Wilcoxon ranksum 
test. The arrows points to two peak regions with the highest Wilcoxon-based differential score. 
The differences in the mean case and the mean control profiles for the two groups in these two 
regions are apparent.   

 
Figure 2.  A statgram for the case/control pancreatic cancer study. The differential score is based 
on the p-value of the Wilcoxon-ranksum test. Peaks with high differential score are labeled by 
arrows.   
 
A typical result of the differential analysis is a set of discriminative peaks; each peak 
accompanied by its univariate differential score. In the multivariate classification analysis, a set 
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of peaks together with predictive classification statistics (accuracy, sensitivity, specificity or area 
under the ROC curve) the peaks achieve on some classification model (e.g., a support vector 
machine, CART, etc.) is reported.  In both cases, the analysis leads to a set of peaks representing 
signals with the strongest discriminative power and some quantitative assessment of their 
discriminative potential.    
 
3   Computational methods for characterization of discriminative peaks 
in the low-resolution whole-sample spectra 
 
The interpretive data analysis lets us assess the potential of individual peaks for differentiating 
case/control subjects on the level of MS profile signals. However, this analysis does not provide 
any insight about the species that stand behind these signals. To fulfill the ultimate goal of 
discovery proteomics, the discriminative signal species suggested by the study need to be 
identified. The objective of our work is to develop computational methods that can provide early 
identification and characterization of MS profile signals and this without the need for secondary 
protein identification analyses. Such a characterization can provide an early understanding of the 
discriminative potential achieved by profiles in a specific study, or can at least help us to narrow 
down the number of discriminative signals that should be subjected to a more detailed secondary 
protein identification interrogation and analysis.  
 
We focus on two computational solutions to achieve our goal: 
 

• labeling of peaks corresponding to highly abundant protein species (Section 3.1); 
• evaluation of the specificity of discriminative peaks with the help of profiles collected for 

other disease studies (Section 3.2). 
   

In the first case, we hope we can reliably identify some of the peaks in the MS profiles directly by 
relying on the knowledge of expected protein abundances in the sample. In the second case, our 
hope is that other disease studies may help to reveal more information about the nature of 
potential biomarker signals.  
 
3.1. Peak-labeling for low-resolution whole-sample proteomic profiling  
 
The goal of peak labeling is to annotate peaks in the spectra with corresponding proteins. The 
general peak labeling problem is complicated by the existence of multiple protein species with the 
same or close to the same mass, which are, given the MS instrument precision, very hard to 
distinguish. In addition, the ionization process may cause proteins to take on double or triple 
charge causing the signal of the same species to be recorded multiple times at different mass to 
charge positions (one half, one third of the original mass to charge value respectively) increasing 
possible signature overlaps. The overlap problem is further complicated by the fact that a pure 
(unmodified) protein may undergo possible post-translational modifications, each of which leads 
to a shift of the protein signature (peak) in the spectra. Due to the large number of possible 
signature overlaps, an attempt to consider all possible protein species and their modifications as 
peak candidates does not to lead to any feasible peak-labeling solution.  
 
The low-resolution MS profiling technology is limited in terms of the number of species it can 
reliably detect and measure. The number of measurements and peaks defining a typical MS 
profile gives us very a rough upper limit on the number of species we can directly observe. The 
total number of measurements for the SELDI-TOF-MS technology is in the neighborhood of 
65,000 measurements. Many of these measurements are aggregated into peaks that tend to refer to 
the same underlying signal. Considering only profile peaks, the number of species we can detect 
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counts at most few thousands. For example, the feasible region for detection in SELDI-TOF-MS 
profiles (1,500-40,000 Daltons) yields approximately 3000 peaks. This number is significantly 
smaller than the number of proteins in the Swiss-PROT or other proteomic databases, and we did 
not even count multiply charged ions and possible protein modifications. Given this, it is 
unrealistic to believe that every possible species with a specific molecular mass can be seen or 
detected by the MS technology.  Some of the species may not bind well to the matrix surface and 
they are washed away when the sample is processed and rinsed. But most of all, many species 
occur in the sample in such a low concentration that their detection becomes very unlikely.  At 
the end, it is the higher abundance species in the sample we are more likely to detect in the 
whole-sample profile.  
 
The species and their abundance in the sample depend on the specimen analyzed in the study. 
Naturally, more is known about common sample media (serum, plasma) and their expected 
composition in terms of their high abundant species (Anderson & Anderson 2004). Such a prior 
knowledge can be used to select a set of protein candidates and their modifications we expect are 
more likely to be seen in the sample. We assume this set is provided as an input to our peak-
labeling procedure.  
 
Peak-labeling procedure 
 
The goal of peak-labeling is to annotate peaks by assigning protein labels to peaks (Figure 3). We 
assume we have finite set of protein labels L={l1, l2, …, lk} that make sense in context of the 
specimen and instrument sensitivity. We assume a profile is defined by a set of peaks Q={ q1, q2, 
…, qm} where each peak i is defined by its mass and intensity components (xi, yi ).  The protein 
labels are used to annotate peaks in the profile. We assume the following restrictions on the peak 
labeling procedure: a protein label cannot be assigned to more than one peak, and peak labels 
must be assigned to peaks in order of their expected mass. Given these restrictions the peak 
labeling problem can be viewed as the problem of assigning peaks to different protein labels 
(Figure 3). We note that it is not necessary that all peak labels are assigned a peak, and of course, 
many peaks may remain unassigned. 
 

 
 
 Figure 3. The basics of the peak-labeling procedure. (a) A protein label (A,B,C,or D in the 
figures) is assigned to at most one MS signal peak. The assignment must respect the expected 
mass of the protein species used.  (b) Not all peak labels may receive a peak.   
 
As in general, there are more ways of assigning peaks to labels, we need a model that lets us 
measure the quality of each individual labeling. The best labeling is then achieved by optimizing 
this measure. In (Pelikan & Hauskrecht 2007) we proposed a new probabilistic model that 

(a) (b) 

m/z m/z 

A B C D A B C D 
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measures the quality of the peak-labeling by considering both the location and the intensity 
components of the peak. The novelty of the approach stems from the incorporation of the peak 
intensity component into the model. The expected benefit of such a model is its improved peak 
labeling performance over more traditional peak-location-only approaches. Intuitively, if we 
consider an assignment of a label to a peak we need to consider not only its expected location, but 
also its expected intensity. This may prevent mislabeling of peaks due to possible imprecision in 
peak’s m/z position and the fact that more than one peak may provide a match for a protein 
species.  
 
The model 
 
Our probabilistic model consists of three key components (Pelikan & Hauskrecht 2007):  
• Detection component defining the probability a protein species is detectable as a peak in the 

profile; 
• Peak-location component defining the probability a protein species is detected at a specific 

m/z location; 
• Peak-intensity component defining the probability of relative intensity measurements for 

protein species considered by the peak labeling procedure. 
 
These three components let us define the joint distribution: 
 
 
of protein labels being assigned to peaks with specific location and intensity measurements. A 
special null value is used to denote an “empty” assignment representing the case in which the 
species is not detected in the profile.   
 
Probability of detection. The detection component of the model is represented by the probability 
p0,i a protein species li is detectable as a peak in the profile Our model assumes the chance of k 
protein species showing up/or not showing as peaks in the profiles are independent of each other. 
For example, the probability that none of the k species is detected in the profile is     
 
  
 
 
Peak-location component. A peak corresponding to a protein species may not be recorded 
exactly at its expected mass-to-charge location; instead it may be recorded in its close 
neighborhood.   This may lead to a situation in which more than one peak may be associated with 
a protein.  We assess the quality of the protein-location match using a Gaussian density model:   
 
 
 
 
where iµ  is the expected location of protein’s peak and iσ  defines the variance of the location 
due to the instrument precision. The joint probability of multiple protein-location matches is then 
defined as:   
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Peak-intensity component.  The fact that there can be more than one peak location match for a 
specific protein may lead to many incorrect peak labelings.  To improve the accuracy of detection 
we enhance the model with the peak intensity information and the knowledge of expected protein 
composition and their relative abundance in the sample.  Intuitively, if the species A is expected 
to be more abundant than B in the sample, we expect the intensity of the peak for A (integral peak 
intensity) to be is higher than the intensity for the peak B. We incorporate the knowledge of 
expected relative abundance through a Dirichlet distribution model. More specifically, the 
probability of a specific protein-to-peak-intensity assignment is:  
      
 
 
 
 
 
where  kαα K,1   are hyperparameters of the Dirichlet distribution and 
 
 
 
 
 
represent relative abundances observed in the specific protein-peak assignment. Figure 4 
illustrates the nature of the problem. We need to assess the quality of each protein-to-peak 
assignment in terms of its intensity measurements while relying on the knowledge of the expected 
abundances of protein species in the sample.  
 
 

 
Figure 4. Relative abundance component of the peak-labeling model. All assignments of protein 
labels to peaks (two assignments are shown) are covered by the Dirichlet distribution model built 
from knowledge of expected relative abundances.  
 
Given the three model components, the joint probability of all (in-order) protein label 
assignments is:  
 
 
 
 
while all out of order assignments are explicitly enforced to 0.  
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Since a proteomic profile consists of many peaks and only some of them are assigned to protein 
labels we assume the probability of all profiles consistent with the assignment is uniform and the 
probability of all inconsistent profiles is 0. This rule defines the conditional probability: 
 
 
of a profile Q.  
 
Peak-labeling optimization procedure 
 
Having defined a probabilistic model, our goal is to identify the protein-to-peak assignment L* 
with the highest posterior for the observed profile Q:   
 
 
 
 
 
Since the conditional probability )),(),,(|( 111 kkk yxlyxlQp == K is uniform for all profiles 
respecting the labeling, it is sufficient to optimize )),(),,(( 111 kkk yxlyxlp == K  that is 
consistent with the observed profile. The advantage of this optimization criterion is that it is 
nearly-decomposable along individual protein labels (Equation 4). Note that if the score was fully 
decomposable along protein species, we would be able to solve the optimization problem through 
the dynamic programming approach. The full decomposability of the probabilistic score in 
Equation 4 is, however, limited by global dependencies of the peak intensity component 
(Equation 3).  To overcome this problem, we approximate the components used in the calculation 
of the normalization constant through an iterative heuristic optimization procedure. The 
procedure starts with an initial (heuristic) assignment of peak intensities to labels. These estimates 
are then fixed which makes the score decomposable and amenable to the dynamic programming 
solution. Once the assignment of proteins-to-peaks is found the initial intensity assignment is 
corrected and the new dynamic programming optimization is performed. This is repeated till no 
new intensity assignments are found in the previous step.      
 
Experiments 
 
To test our method we used data generated from the virtual MALDI-TOF mass spectrometer 
proposed by Morris et al. (2005). A set of 100 simulated spectra was generated with 16 controlled 
spiked-in peptides. The relative concentrations of these peptides were chosen arbitrarily and 
retained as information to be used by the identification procedure. Our task was to label peaks in 
the spectra correctly (true positive), while avoiding labeling peaks which may appear as a result 
of noise (false positive).  
 
To assess the quality of our peak-labeling method we evaluated its precision-recall (PR) curve 
(Davis & Goodrich 2006) and related statistics.  In our task, precision refers to the fraction of 
label-assigned peaks which are matched to the correct label, while recall refers to the fraction of 
the 16 labels which were correctly assigned to a peak. We have tested two versions of our peak-
labeling method: a baseline version that relies only on the expected mass of the species and our 
improved version that combines the knowledge of the expected mass together with their 
abundance information. The PR curves for the two methods were obtained by varying the 
parameters of the model and are shown in Figure 5.  
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The PR curve for the peak-location method is completely dominated by the PR curve for the 
abundance-enhanced method. . The area under the method’s PR curves (AUC) for the peak 
location method is 0.57877, while the abundance-enhanced method achieves an AUC of 0.73866. 
Similarly, the maximum F-measure, obtained by the method using only peak information was 
0.52257, versus 0.66667 when including relative abundance information. These results show the 
contribution of relative abundance information greatly improves the accuracy of the peak-labeling 
method. 

 
  
Figure 5. Precision recall (PR) curves for 
two different peak-labeling methods: the 
solution based on the location component 
only and the solution that takes into account 
both the location and the abundance 
information. The curves demonstrate the 
improved performance of the more 
informed method. The area under the PR 
curves (AUC) for the peak location method 
is 0.57877, while the abundance-enhanced 
method achieves an AUC of 0.73866.   
 
 
 
 

 
3.2. Analysis of discriminative peaks using data from past case-control studies 
 
The construction of bioinformatics data repositories has been advocated for a long time and there 
are ongoing efforts to store and share the bioinformatics data among researchers from variety of 
platforms and studies.  Data repositories can be used to combine samples from multiple studies 
that target the same disease and use them to achieve a higher power of the analysis. Our 
computational approach is slightly different: we use the data generated from studies for other 
diseases to evaluate the specificity of putative MS biomarker signals for the study at hand. The 
approach does not attempt to identity discriminative signals; instead it seeks to answer the 
following questions: Is the discriminative peak present in other studies? Does it carry any 
discriminative information also for other (related) diseases? How specific is the signal?  
 
To demonstrate the potential of past data repositories for understanding of existing discriminative 
signals consider two studies performed on two types of cancer: the lung and the pancreatic 
cancer. The data in these studies can be analyzed individually and a set of putative biomarker 
signals can be identified for both of them. However, when analyzed individually, it is not really 
clear how important these biomarker candidates are for the detection of each disease. The main 
concern is that a discriminative signal identified in a study data may reflect differences in 
between healthy subjects and patients suffering from a larger group of diseases, and hence may 
not define a biomarker suitable for the detection of the target disease only. For example, analyses 
of samples for many disease studies may reveal increased levels of Serum amyloid A (SAA) and 
its corresponding peak signature when compared to healthy controls. Such a peak, though 
promising from the viewpoint of case/control discriminability, may not lead to a good disease-
specific biomarker.   
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Figure 6 shows the results and benefits of the combined analysis on two cancer studies. The 
analysis is performed using univariate differential score based on the p-value of the Wilcoxon-
ranksum test.  The smaller values reflect better discriminability of case and control profiles. The 
results show that two peaks in the vicinity of 9500 Daltons have a good discriminatory potential 
for both the lung and the pancreatic cancer. Hence these are likely to represent cancer biomarkers 
but they are unlikely to provide any strong evidence with respect to the lung or the pancreatic 
disease. On the other hand, a large peak in the neighborhood of 9300 Daltons appears to provide a 
very good discriminative potential for the pancreatic cancer, but not for the lung cancer. Hence, it 
is a good pancreatic cancer specific signal candidate. This simple example demonstrates the 
possibilities of computational analysis of the MS proteomic signals for multiple disease studies 
and insights the analysis may offer.    
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Figure 6. Comparison of differential p-values for peaks identified in the lung cancer dataset with 
the data from the pancreatic cancer study.  Two peaks in the vicinity of 9500 Daltons exhibit a 
very good discrimination for both types of cancer, while the peak in the vicinity of 9300 Daltons 
is a very good discriminator for the pancreatic cancer data.  
 
4  Conclusions 
 
We have described two computational methods for post-interpretive analysis of whole-sample 
MS proteomic profiles for case control studies that is aimed to illuminate the nature of underlying 
discriminative signals with the help of external knowledge and data obtained for other disease 
studies.  
 
Our peak-labeling procedure relies on information about the mass of highly abundant protein 
species which are expected to be found in a particular sample medium. The probabilistic model 
that supports the peak-labeling procedure comes with a number of parameters that need to be 
estimated from external knowledge sources including protein databases and literature. This 
process is not always straightforward and may require additional auxiliary calculations. For 
example, the mass-to-charge location of a protein can be estimated from the known protein 
sequences by summing up the average isotopic amino acid residue weights for the sequence. The 
double and triple charge peak locations can be identified from the parent protein and the 
signatures are expected to be seen at one half and one third of their mass on the mass-to-charge 
axis (Morris et al. 2005). Known protein modifications and their sequence information can be 
extracted from the protein databases and used to calculate a modified peak location using the 
same approach as applied for the parent protein.  
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The parameters of the detection and the relative abundance components of our model cannot be 
mined in the proteomic databases and must be estimated from the literature. The relative 
abundance component builds upon the knowledge of protein composition of the specific sample 
medium. For example, the paper by Anderson & Anderson (2004) gives a list of the top 70 high-
abundant protein components occurring in the plasma together with their expected concentrations. 
Such knowledge can be directly translated into our relative abundance model.  Efforts to 
characterize proteomes of other specimen include urine (Rassmusen et al. 1996) and saliva (Hu et 
al. 2005). Finally, not all high abundant proteins in the sample may be detectable by the 
instrument. For example, some of the species may not bind well to the surface of the chip. Our 
preliminary experiments on spiked-in proteomic spectra (Pelikan & Hauskrecht 2007) were 
performed assuming a fixed prior probability of occurrence of all species and their modifications 
that are most abundant in the plasma (based on the Anderson & Anderson 2004 study). However, 
we expect these probabilities may be further refined as we gain and incorporate more knowledge 
into the procedure. We expect the knowledge of affinity of chip surfaces to proteins, expected 
proportions of singly and multiply charged ions, or expected proportions of parent and modified 
proteins in the sample will greatly enhance our ability to identify the protein species.   
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