
Abstract: Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-
specific information with high potential impact on the early detection and classification of cancer and other diseases.  The new 
profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility 
of classification results and their significance.  In this work we describe a computational validation framework, called PACE 
(Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved 
Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data 
samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. 
A statistically significant ACE increases our belief that a discriminative signal was found in the data.  The advantage of PACE 
analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not 
protect researchers against confounding in the experimental design, or other sources of systematic or random error.We use PACE 
analysis to assess significance of classification results we have achieved on a number of published data sets.  The results show that 
many of these datasets indeed possess a signal that leads to a statistically significant ACE.   
Keywords: ovarian cancer, pancreatic cancer, prostate cancer, biomarkers, bioinformatics, proteomics, disease prediction models, 
early detection 

Introduction 
High-throughput, low resolution time-of-flight mass spectrometry systems such as surface-enhanced laser de-
sorption ionization - time of flight (SELDI-TOF) mass spectrometry (SELDI; Merchant and Weinberger, 2000; 
Issaq et al., 2002) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI) 
are just beginning to emerge as widely recognized high-throughput data sources for potential markers for the 
early detection of cancer (Wright et al., 1999; Adam et al., 2001; Petricoin et al., 2002).  Spectra, or peptide 
profiles, are readily generated from easily collected samples such as serum, urine, lymph, and cell lysates.  
Comparisons have been made for a large number of cancers (Table 1) in search of diagnostic markers, with as-
tonishingly good initial results for the classification of cancer and control profiles collected within respective 
studies.  

With these very promising results the questions related to the significance and reproducibility of such classi-
fication results become imminent. Reproducibility and significance are essential with these types of data since 
the identity of the peptides located at clinically significant m/z positions that translate to the classification accu-
racy are unknown and their correctness cannot be verified through independent experimental studies.  

The process of peptide profile generation is subject to many sources of systematic errors. If these are not 
properly understood they can potentially jeopardize the validity of the results. Such concerns have led to the 
analysis of possible biases present in published data sets and questions on the reproducibility of some of the 
obtained classification results under the proper experimental setup (Baggerly et al., 2004). Such studies high-
light the need for randomization of sample order acquisition and processing, maintaining constant protocols 
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over the course of a study (including sample han-
dling and storage conditions), identification of po-
tential confounding factors and the use of a balanced 
study design whenever possible to allow proper 
characterization of variation in the non-diseased 
population. Certainly, a design matrix should be cre-
ated for each study and inspected for patterns that 
reflect complete or severe partial incidental con-
founding. In addition, multi-site validation studies, 
which are currently ongoing in the EDRN (Early 
Detection Research Network), can help to identify 
possible problems.  

The peptide profile data are not perfect and in-
clude many random components. The presence of 
large amounts of randomness is a threat for interpre-
tive data analysis; the randomness increases the pos-
sibility of identifying a structure and patterns in a 
completely uninformative signal. In such a case we 
want to have an additional assurance that the data 
and results of interpretive (classification) analysis 
obtained for these data are not due to chance. Per-
mutation tests (Kendall, 1945; Good, 1994) used 
commonly in statistics offer one solution approach 
to this problem and allow us to determine the signifi-
cance of the result under random permutation of tar-
get labels. In this work, building upon the permuta-
tion test theory, we propose a permutation-based 
framework called PACE (Permutation-Achieved 
Classification Error) that can assess the significance 
of the classification error for a given classification 
model with respect to the null hypothesis under 
which the error result is generated in response to 
random permutation of the class labels.  

The main advantage of the PACE analysis is that 
it is independent of the model design. This allows 
the problems of choosing the best disease prediction 

model and achieving a significant result to become 
decoupled. Many of the methods of high-throughput 
data analysis are very advanced, and thus may be 
poorly understood by the majority of researchers 
who would like to adopt a reliable analysis strategy. 
Understanding PACE analysis involves only visual 
examination of an intuitive graph (e.g., Figure 1), 
which makes it easy to apply and explain to the nov-
ice.  

In the following we first describe the classifica-
tion problem and evaluation of the classification per-
formance.  Next we introduce the PACE framework 
that offers additional assessment of the significance 
of the results. We compare PACE conceptually to 
existing confidence assessment methods; it is found 
to be potentially complementary to confidence inter-
val-based bootstrap methods, which seek to deter-
mine whether a confidence interval around a statistic 
of interest includes a single point (or a series of sin-
gle points; i.e., the ROC curve).  Finally, we apply 
PACE analysis to a number of published and new 
SELDI-TOF-MS data sets. We demonstrate with 
positive and negative results the utility of reporting 
not only the ACE but also whether a given ACE is 
statistically significant.  PACE thus provides a be-
ginning reference point for researchers to determine 
objectively whether they have constructed a signifi-
cant classifier in the discovery phase.  

Evaluation of classifiers 

Classification 
Classification is the task of assigning class “labels” 
to sample data which come from more than one cate-
gory. In our case, the classification task is to deter-

Cancer Type SN, SP Reference 

Ovarian Cancer 100%, 95%  Petricoin et al., 2002 

Prostate Cancer 100%, 100% Qu et al., 2002 

Breast Cancer 90%, 93% Vlahou et al., 2003 

Breast Cancer 91%, 93% Li et al., 2002 

Head & Neck Cancer 83%, 90% Wadsworth et al., 2004 

Lung Cancer 93.3%, 96.7% Xiao et al., 2003 

Pancreatic Cancer 78%, 97% Koopmann et al., 2004 

Table 1: Published sensitivities and specificities of SELDI-TOF-MS profiling for various types of cancers 
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mine whether a particular proteomic profile comes 
from a case (cancerous) or control (non-cancerous) 
population. A classification model which assigns 
labels (either case or control) to profiles can be 
learned from training examples; profiles with known 
case and control labels. The goal is to achieve a clas-
sifier that performs as best as possible on future 
data. Practical concerns related to the classifier 
learning include the possibility of model overfit. The 
overfit occurs when the classification model is bi-
ased strongly towards training examples and gener-
alizes poorly to new (unseen) examples. Typically, 
model overfit occurs due to the inclusion of too 
many parameters in the model in conjunction with a 
small number of examples.  To assess the ability of 
the classification model to future data we can split 
the data from the study into training and test sets; 
the training set is used in the learning stage to build 
the classifier, the testing set is withheld from the 
learning stage and it is used for evaluation purposes 
only. 

Evaluation 
Training set: a collection of samples used to identify 
features and classification rules based on discrimina-
tory information derived from the comparisons of 
features between or among groups. 

Test set:  a collection of samples to which the 
classification rules learned from the training set are 
applied to produce an estimate of the external gener-
alizability of the estimated classification error. The 
classification error rate observed when classifier is 
applied to them is called the test error rate. 
(Similarly, the sensitivity is called test set sensitiv-
ity, etc.).  The classifier rules learned include pa-
rameters optimized using the training set that are 
then included in the prediction phase (for predictions 
on the test set). Test errors are usually higher than 
the training errors; Feng et al refer to the difference 
as ‘optimism’; (Z. Feng, personal communication).  
Test errors are less biased than training errors, and 
therefore are more (but not completely) reflective of 
the expected classification error should the classifier 
be applied to new cases from the same population.  
The use of the test data set errors as the estimate is 
appropriate because it is low-biased compared to the 
classification errors achieved using only the training 
data set.  The test set may be a held-out set of sam-

ples, or, more commonly, a number of held-out sets 
to avoid inaccuracy of ACE. 

Validation set: a set of samples collected and/or 
processed and/or analyzed in a laboratory or at a site 
different from the laboratory or site where the origi-
nal training sets were produced.  Validation sets are 
never included in the learning step. All validation 
sets are test sets but not all test sets are validation 
sets.  The more independence there is among sample 
sets, laboratory protocols, and implementation of a 
particular method of predicting class membership, 
the more robust the biomarkers. 

Cross-validation 
Methods for estimating the test error include leave-
one-out cross-validation, k-fold validation, and ran-
dom subsampling validation.  The selection of each 
of these depends in part on the number of samples 
available; these methods and their suitability for ap-
plication to the analysis of high-throughput genomic 
and proteomic data sets have recently been explored 
(Braga-Neto & Dougherty, 2004).  Use of the test 
error rates and performance measures derived from 
those rates allows one to assess the expected sensi-
tivity (SN) and specificity (SP) of a given test or 
classifier; these performance measures are usually 
summarized in a confusion matrix.  Even with these 
estimated performance measures, however, a more 
general question remains: for a broad range of po-
tential outcomes and focus, from biomarker evalua-
tion, discovery, validation and translation, what level 
of sensitivity is to be deemed significant, or suffi-
cient, at a specified level of specificity?  The clear 
overall objective of maximizing both SN and SP is 
built into the receiver-operator-characteristic (ROC) 
evaluation of a test, and the search of the most infor-
mative test usually seeks to maximize the area under 
the curve (AUC).  Estimates of SN, SP, the ROC 
curve, and its area can all be determined using ran-
dom subsampling validation.  These approaches are 
well-studied, and their estimates of expected classifi-
cation error are generally understood to be less bi-
ased than those estimated using training data sets. 

Permutation–based validation  
The individual performance statistics by themselves, 
do not always allow us to judge the importance of 
the result. In particular, one should be always con-
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cerned by the possibility that the observed statistic is 
the result of chance.  Careful elimination of this pos-
sibility gives more credibility to the result and estab-
lishes its potential importance.  Permutation test 
methods offer a class of techniques that make this 
assessment possible under a wide variety of assump-
tions.  Expected performance under the null model 
varies with the specifics of a design, and the distri-
bution of the performance statistics vary with the 
distribution of information among markers and the 
type of disease prediction model used. 

Permutation test methods work by comparing the 
statistic of interest with the distribution of the statis-
tic obtained under the null (random) condition. Our 
priority in predictive models is to critically evaluate 
the observed discriminatory performance. In terms 
of hypothesis testing the null hypothesis we want to 
reject is: 

The performance statistic of the disease predic-
tion model on the true data is consistent with the 
performance of the model on the data with randomly 
assigned class labels. 

The objective of optimizing a classification score 
itself is largely uncontrolled in most genomic and 
proteomic high-throughput analysis studies.  Re-
searchers do not, for example, typically attempt to 
determine and therefore do not report the statistical 
significance of the sensitivity of a test, in spite of the 
existence of a number of approaches for performing 
such assessments. Here we introduce a permutation 
method for assessing significance on the achieved 
classification error (ACE) of a constructed predic-
tion model. 

Theory 
A permutation test is a non-parametric approach 

to hypothesis testing, which is useful when the dis-
tribution for the statistic of interest T is unknown. 
By evaluating a classifier’s statistic of interest when 
presented with data having randomly permuted la-
bels, an empirical distribution over T can be esti-
mated. By calculating the p-value of the statistic’s 
value when the classifier is presented with the true 
data, we can determine if the classifier’s behavior is 
statistically significant with respect to the level of 
confidence α. 

Let 

 
be a set of all permutations of labels of the dataset 

with d examples. The permutation test (Mukherjee et 
al., 2003) is then defined as:  
• Repeat N times (where n is an index from 

1,…,N) 
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from a uniform distribution over  
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Table 2: Steps in the Analysis of High-Throughput Peptide Profiling Spectra. These steps were elucidated in part in discussion with the EDRN Bioinfor-
matics Working Group.  We gratefully acknowledge their input. 
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under the empirical distribution  

 

• If 

 

reject the null hypothesis.  
For our purposes, the statistic of interest T is the 

achieved classification error (ACE). 

Application of permutation-based valida-
tion to peptide profiling (PACE) 
We define a classification method f as all steps ap-
plied by a researcher to the data prior to some bio-
logical interpretation. These include the steps sum-
marized in Table 2. In the case of  SELDI/MALDI-

TOF-MS, this may include mass calibration, base-
line correction filtering, normalization, peak-
selection, a variety feature selection and classifica-
tion, approaches. We take the position that every 
researcher that has decided to approach the problem 
of analysis of a high-throughput proteomic data set 
has embarked on a journey of method development; 
i.e., the series of decisions made by the research it-
self is method f.  

We assume that the researcher has adopted a 
study design that employs one or more training/test 
set splits, For our purposes, we use 40 random train-
ing/test splits to achieve a reasonably accurate esti-
mate of ACE. A third validation sample can be set 
aside to verify the statistic on the pristine data. The 
validation set can either be produced at the same 
time, under the same conditions as the training/test 
data set. A more general estimate of the external va-

 

Experimental Design Selection of type and numbers of samples to compare 

Measurement Determination of sample rate 
Mass calibration 

Preprocessing Profile QA/QC filtering 
Variance correction/regularization 
Smoothing 
Baseline correction 
Normalization (internal or external) 
Profile Alignment 

Data Representation Determination of profile attributes: 
· Peak selection 
· Whole-profile 
· Partial-profile 
· Binning 

May also include peak-finding algorithms and peak-matching routines 
Feature Selection Identification of profile features which are likely to be clinically significant: 

· Univariate statistical analysis 
· Multivariate feature selection 

Classification Rendering sample class inferences 

Computational Validation / Study  
Design 

Calculation of an estimated classification error rate which is hopefully unbiased and accurate. May involve: 
· Random subsampling 
· Bootstrapping 
· k-fold validation 
· Leave-one-out validation 

Significance Testing of ACE PACE (this paper) 
Boostrap confidence interval estimation (Efron and Tibshirani, 1997) 
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lidity of the estimate of the generalization error and 
its robustness to different laboratory conditions (and 
thus an assessment of the potential for practical 
(clinical) application) is obtained when the valida-
tion set is obtained at a different time or better yet in 
a different laboratory (as in multisite validation stud-
ies).  

Permutation-Achieved Classification Er-
ror (PACE) Analysis  
Given the achieved classification error (ACE) esti-
mated via method f, generate an arbitrarily large 
number of new data sets with random sample re-
labeling. Method f is applied to each of the permuted 
data sets, resulting in a null distribution of ACE 
(called PACE).  Lower 95th and 99th percentiles are 
located in PACE: ACE is then compared to these 
percentiles to assess the statistical significance of the 
classifier method f. 

Alternatives to PACE 
The permutation–based approach compares the error 
achieved on the true data to errors on randomly la-
beled data. It tries to show that the result for the true 
data is different from results on the random data, and 
thus it is unlikely the consequence of a random proc-

ess. We note that the permutation-based method is 
different and thus complementary to standard hy-
pothesis testing methods that try to determine confi-
dence intervals on estimates of the target statistics. 
We also note that one may apply standard hypothe-
sis testing methods to check if the target statistic for 
our classification model is statistically significantly 
different from either the fully random, trivial or any 
other classification model. However, the permuta-
tion framework always looks at the combination of 
the data label generation and classification processes 
and thus establishes the difference in between the 
performance on the true and random data.  

Classification error is a composite evaluation 
metric.  Other types of performance measures for 
which confidence intervals have been studied so far 
include significance of SN at a fixed SP (Linnet, 
1987), AUC (as implemented, for example, in Accu-
ROC; Vida, 1993), and the ROC curve itself 
(Macskassy et al., 2003).  Here we briefly explain 
these options. Which performance measure to assess 
may vary according to strategy.  Bootstrap-estimated 
or analytically determined confidence intervals 
around SN at a specified SP (Linnet, 1987) requires 
that a desired SP be known, and this depends on its 
intent; for example a screening test should have very 

Figure 1: Example of PACE analysis. 
The permutation-achieved classification 
error (PACE) distribution is estimated by 
computing a statistic (in this case, testing 
error) over repeated relabeling of the 
sample data. The top solid line indicates 
the mean achieved classification error 
(MACE) of this distribution. The low 95th 
and 99th percentiles of the PACE distribu-
tion are given by the dashed and dotted 
lines, respectively. If the achieved classi-
fication error (ACE, bottom marked line) 
falls below a percentile band, it is a sta-
tistically significant result at that confi-
dence level. In this example, ACE for a 
Naïve Bayes classifier using a weighted 
separability without peak selection or de-
correlation (see below for details) falls 
consistently below the 99th percentile 
band of the PACE distribution. It can be 
said that this classifier produced a statis-
tically significant result at the 99% level. 
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high SP to avoid resulting in too many false posi-
tives when applied to a population. Even here, how-
ever, “very high” and “too many” are rather context-
dependent, should not be considered in a silo by ig-
noring existing or other proposed diagnostic tests.  
Acceptable FP values depend to a degree on the SP 
of existing practices, and to an extent on the preva-
lence of the disease.  Any screen can be considered 
to change the prevalence of disease in the ‘potential 
patient’ population, and therefore follow-up with 
panels of minimally invasive markers, or multivari-
ate studies of numerous risk factors (demographic, 
familial, vaccination, smoking history), and long-
term monitoring, might make such screening worth-
while.  High-throughput proteomics highlights the 
need for dynamic clinical diagnostics. 

The various approaches suggested by Linnet were 
extended and revised with a suggestion by Platt et al. 
(2000) to adopt the bootstrap confidence interval 
method (Efron and Tibshirani, 1993).  A working 
paper by Zhou and Qin (2003) explores related ap-
proaches. One strategy is to perform bootstrapping 
(Efron and Tibshirani, 1993) and calculate a 1-α  
confidence interval around a measure of interest.  
Bootstrapping is a subsampling scheme in which N 
data sets are created by subsampling the features of 
the original data set, with replacement.  Each of the 
N data sets is analyzed.  Confidence intervals around 
some measure of interest (T) can be calculated or 
consensus information can be gathered; in either 
case, variability in an estimate T is used a measure 
of robustness of T. Various implementations of the 
bootstrap are available; the least biased appears to be 
bias-corrected accelerated version (Efron and Tib-
shirani, 1993). 

A second strategy is to calculate confidence inter-
vals around the AUC measure.  Bootstrapping 
(Efron and Tibshirani, 1997) is sometimes used to 
estimate AUC confidence intervals.  Relying on con-
fidence in the AUC can be problematic because it 
reports on the entire ROC, and, in practice, only part 
of the ROC is considered relevant for a particular 
application (e.g., high SP required by screening 
tests.  A literature on assessing the significance of 
partial ROC curves has been developed (Dodd and 
Pepe, 2003; Gefen et al., 2003); a recent study 
(Stephan, Wesseling et al., 2003) compared the fea-

tures and performance of eight programs for ROC 
analysis. 

A third strategy is to calculate bootstrap confi-
dence bands around the ROC curve itself 
(Macskassy et al., 2003).  Under this approach, boot-
strapping is explored and bands are created using 
any of a variety of ‘sweeping’ methods that explore 
the ROC curve in one (SN) or two (SN and 1-SP) 
dimensions. 

Experimental results of PACE analysis 
on clinical data 
We applied PACE analysis to the following pub-
lished data sets, and one new data set from the 
UPCI, using a number of methods of analysis: 

• UPCI Pancreatic Cancer Data 
• Ovarian Cancer Data (D1; Petricoin et al., 

2002) 
• Ovarian Cancer Data (D2; Petricoin et al., 

2002) 

• Prostate Cancer Data (Qu et al., 2002) 
The UPCI’s  pancreatic cancer data are only in 

the preliminary stages of analysis and we report only 
initial results.  An ongoing study with an independ-
ent validation set is underway.  Preoperative serum 
samples were taken from 32 pancreatic cancer cases 
(17 female, 15 male).  Twenty-three non-cancer age, 
gender, and smoking history-matched controls were 
analyzed; ages ranged from 34 to 87, pancreatic can-
cer cases had a mean age of 64, controls had a mean 
age of 67 (p=0.19).  Of the cancer samples, 16 were 
resected; 6 patients had locally advanced unre-
sectable disease, and 10 had metastatic disease.  

The ovarian cancer datasets D1 and D2 
(Petricoin et al., 2002) were obtained through the 
cl inical  proteomics program databank 
(http://ncifdaproteomics.com/). Both datasets were 
created from the same samples, but D2 was proc-
essed using a different chip surface (WCX2) as op-
posed to the hydrophobic H4 chip used to generate 
the data in D1. The samples consist of 100 controls: 
61 samples without ovarian cysts, 30 samples with 
benign cysts smaller than 2.5 cm, 8 samples with 
benign cysts larger than 2.5 cm, and 1 sample with 
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benign gynecological disease. The samples include 
100 cases: 24 samples with stage I ovarian cancer, 
and 76 samples with stage II, II and IV ovarian can-
cer. 

The prostate cancer dataset (Qu et al., 2002) was 
also acquired from the clinical proteomics program 
databank. It consists of 253 controls: 75 samples 
with a prostate-specific antigen (PSA) level less than 
4 ng/ML, 137 samples with a PSA level between 4 
and 10 ng/ML, 16 samples with a PSA level greater 
than 10 ng/ML, and 25 samples with no evidence of 
disease and PSA level less than 1 ng/ML. 69 cases 
exist in this dataset: 7 samples with stage I prostate 
cancer, 31 samples with stage II and III prostate can-
cer, and 31 samples with biopsy-proven prostate 
cancer and PSA level greater than 4 ng/ML.  

Methods Applied and Evaluated 
Table 3 gives a summary of methods applied in the 
analysis.   A brief description of some of these meth-
ods is provided below. A thorough description of 
these methods can be found in Hauskrecht at al. 
(2005, in press).  

Peak detection 
In some circles it is a strong belief that only peaks in 
a profile represent informative features of a profile. 
Peak detection can take place before performing fur-
ther feature selection in order to limit the initial 

amount of the profile to be considered. There are 
various ways in which peak detection can be per-
formed; for the purposes of our experiments, we util-
ize a peak detection method that examines the mean 
profile generated for all training samples, and then 
determines its local maxima. The local maxima posi-
tions become the only features considered for feature 
selection later in the pipeline displayed in Table 3. 
Alternatively, we can ignore the peak detection 
phase completely and consider the entire profile for 
feature selection.  

Feature selection methods 
Fisher Score: The Fisher score is intended to be a 
measure of the difference between distributions of a 
single variable. A particular feature’s Fisher score is 
computed by the following formula: 

 

 

 

where  

 
is the mean value for the ith feature in the positive or 
negative profiles, and  

 
is the standard deviation. We utilize a variant of this 
criterion (Furey, 2000), computed with the following 
formula:  

 

 
To avoid confusion, we refer to the second for-

mula above as our “Fisher-like score”. Features with 
high Fisher scores possess the desirable quality of 
having a large difference between means of case 
versus control groups, while maintaining low overall 
variability. These features are more likely to be con-
sistently expressed differently between case and 
control samples, and therefore indicate good candi-
dates for feature selection. 

AUC Score (for feature selection): Receiver 
operating characteristic curves are commonly used 
to measure the performance of diagnostic systems in 

Method Options (Choice of one) 

Peak Detection • On (Select only peaks) 

• Off (Use the whole profile) 
Feature Selection • Area under ROC curve (AUC) 

• Fisher score 

• J5 test 

• Simple separability criterion 

• t-test score 

• Weighted separability criterion 
De-correlation Enhance-
ment 

• On  (MAC < 1) 

• Off (MAC = 1) 
Classification Model • Naïve Bayesian Classifier 

• Support Vector Machine (SVM) 

Table 3: List of methods applied to datasets. Each dataset was evalu-
ated using PACE analysis with every possible combination of these 
methods.  MAC = maximum allowed correlation. 
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terms of their “hit-or-miss” behavior. By computing 
the ROC curve for each feature individually, one can 
determine the ability of that feature to separate sam-
ples into the correct groups. Measuring the area un-
der the ROC curve (Hanley et al., 1982) then gives 
an indication of the feature’s probability of being a 
successful biomarker. The AUC score for a given 
feature is then obtained by integrating over the ROC 
curve for that feature. As with the Fisher score, 
higher AUC scores signify better feature candidates. 

Univariate t-test: The t-test (Baldi et al., 2001) 
can be used to determine if the case versus control 
distributions of a feature differ substantially within 
the training set population. The t statistic, represent-
ing a normalized distance measurement between 
populations, is given as 

 

 

where 

 
are the empirical mean and standard deviation for 
the ith  feature in the  

 

control samples, and  

 
are likewise the empirical mean and standard devia-
tion for the ith  feature in the case samples. The t sta-
tistic follows a Student distribution with  

 

 

 
degrees of freedom. For each feature, one can then 
calculate the t statistic and associated f, and deter-
mine the associated p-value with a predetermined 
confidence level from a standard table of signifi-
cance. Smaller p-values indicate it is unlikely the 
observed case and control populations of the ith fea-
ture are similar by chance. Thus, it is likely that the 
ith feature is represented in a way that is statistically 
significant between case and control examples, mak-
ing it a good candidate for feature selection. 

We also evaluated feature selection using simple 
separability, weighted separability, and the J5 test 
(Patel and Lyons-Weiler, 2004). 

De-correlation enhancement: After differential 
feature selection, we can perform further feature 
evaluation to avoid highly correlated features. These 
may be of interest for interpreting the biological 
sources of variation among peptides (such as carrier 
proteins; Mehta et al., 2003).  For the purpose of 
constructing independent classifiers, however, it 
may be better to avoid using non-independent fea-
tures - if only to increase the number of features in-
cluded after feature selection - but also to avoid 
overtraining on a large number of highly correlated 
features.  One way to avoid these correlated features 
is de-correlation (removal of features which are in-
ter-correlated beyond some pre-determined thresh-
old). All of the methods described so far can be 
evaluated with and without de-correlation.   

Principal component analysis: Principal compo-
nent analysis, a type of feature construction, incor-
porates aspects of de-correlation by grouping corre-
lated features into aggregate features (components), 
which are presumed to be orthogonal (i.e., uncorre-
lated). 

Classification models 
Naïve Bayes: The Naïve Bayes classifier makes the 
assumption that the state of a feature (indicating 
membership in the case or control group) is inde-
pendent of the states of other features when the sam-
ple’s class (case or control) is known. Let  

 

be a sample consisting of n features, and  

 

be a set of m target classes to which X might belong. 
One can compute the probability of a sample be-
longing to a particular class using Bayes’ rule: 
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The likelihood of sample X belonging to a par-
ticular target class cj is given as the product of each 
probability density function for each feature in the 
population of cj.  

 

 
For our purposes, we assume each feature xk fol-

lows a Gaussian distribution, although other distri-
butions are possible. Thus, the probability density 
function for feature xk is 

 

 

 

where  

 
 
are the mean and standard deviation of the kth feature 
within the population of samples belonging to class 
cj. These two values, and their corresponding pair 
for the control population, must be estimated using 
the empirical information seen in the training set for 
each feature. The estimates are then used in the com-
putation above during the predictive process on the 
testing set. 
Support Vector Machine (SVM): One might imag-
ine a sample with n features as a point in an n-
dimensional space. Ideally, we would like to sepa-
rate the n-dimensional space into partitions that con-
tain all samples from either case or control popula-
tions exclusively. The linear support vector machine 
or SVM (Vapnik 1995, Burges 1995) accomplishes 
this goal by separating the n-dimensional space into 
2 partitions with a hyperplane with the equation 

 

 

where w is the normal to the hyperplane, and  
 

 
is the distance between the “support vectors”. 

These support vectors are the representative samples 
from each class which are most helpful for defining 

the decision boundary. The parameters of the model, 
w and  

 
can be learned from data in the training set 

through quadratic optimization using a set of La-
grange parameters  

 
(Scholkopf 2002). These parameters allow us to 

redefine the decision boundary as  

 

 
where only samples in the support vector contrib-

ute to the computation of the decision boundary. Fi-
nally, the support vector machine determines a clas-
sification  

 

for the ith sample as seen here: 

 

 

where negative  

 

will occur below the hyperplane, and positive  

 
will occur above it. Ideally, all samples from one 

group will have negative 

 

while all others will have positive 
 

PACE Results 
All four cancer datasets were analyzed using classi-
fiers defined by differing configurations of feature 
selection criteria, peak selection, de-correlation, and 
classification models. De-correlation MAC thresh-
olds range from 1 (no de-correlation) to 0.4 (strict 
de-correlation) in increments of 0.2. To assess the 
statistical significance of the classifiers generated 
through these configurations, PACE analysis was 
performed using 100 random permutations of the 
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data over 40 splits into training and testing sets. 
Classifiers were evaluated over the range of 5 to 25 
features, in increments of 5 features.  

For illustrative purposes, examples of PACE 
graphs are presented in the appendices of this work. 
These graphs represent only a portion of the classifi-
ers evaluated for this work. In particular, the appen-
dices present PACE graphs for SVM classifiers en-
forcing a 0.6 MAC threshold, both before and after 
peak selection, for each of the univariate feature se-
lection methods. 

UPCI Pancreatic Cancer Data 
Each possible configuration of classification models 
produced a statistically significant classifier at the 
99% level. This trend was observed for all feature 
sizes in each classifier. See figures A.1 through A.6 
for examples of PACE analysis on this dataset using 
different feature selection criteria. 

Ovarian Cancer Data (D1; Petricoin et 
al., 2002) 
Each possible configuration of classification models 
produced a statistically significant classifier at the 
99% level. This trend was observed for all feature 
sizes in each classifier. See figures B.1 through B.6 
for examples of PACE analysis on this dataset using 
different feature selection criteria. 

Ovarian Cancer Data (D2; Petricoin et 
al., 2002) 
Each possible configuration of classification models 
produced a statistically significant classifier at the 
99% level. This trend was observed for all feature 
sizes in each classifier. 

See figures C.1 through C.6 for examples of 
PACE analysis on this dataset using different feature 
selection criteria. 

Prostate Cancer Data (Qu et al., 2002) 
Under random feature selection, several classifiers 
were produced which were not statistically signifi-
cant at the 99% or 95% level. Using the Naïve Bayes 
classification model, the generated classifiers were 

not significant at the 95% level for small amounts of 
features (5-15). As de-correlation becomes stricter, 
the classifiers lost statistical significance at high 
amounts of features where they had been significant 
with a more lenient MAC. When coupling this tech-
nique with peak selection, no statistically significant 
classifiers were produced. With an SVM-based clas-
sifier using random feature selection, the produced 
classifiers were significant at the 99% level except 
when using the initial 5 features. Changes in MAC 
and peak selection did not change this behavior. 

In general, Naïve Bayesian classifiers using uni-
variate feature selection criteria are significant at the 
99% level as long as peak selection is not performed 
beforehand. The one exception was the J5 test, 
which was unable to produce a significant classifier 
at the 95% level without the aid of de-correlation. 
Applying de-correlation allowed these classifiers to 
achieve significance at the 99% level. When per-
forming peak selection, only the classifiers produced 
using the strictest MAC thresholds (0.6, 0.4) were 
able to achieve some form of significance, and even 
then, only at high amounts of features (15-25).  The 
weighted separability score was unable to produce a 
significant naïve Bayes classifier using peak selec-
tion. 

SVM classifiers using univariate feature selection 
criteria were nearly always significant at the 99% 
level, either with or without peak selection. The few 
instances where there was no significance at the 
95% level occurred using the J5 and simple separa-
bility scores without de-correlation. In the case of 
the J5 score, lowering the MAC to 0.8 remedied the 
situation, while the simple separability score im-
proved simply through incorporating additional fea-
tures. 

See figures D.1 through D.6 for examples of 
PACE analysis on this dataset using different feature 
selection criteria. 

Discussion 
We have before us a daunting challenge of creat-

ing conduits of clear and meaningful communication 
and understanding between ‘consumers’ 
(statisticians, computational machine learning ex-
perts, bioinformaticians) and the producers of high 
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throughput data sets.  The objective is to maximize 
the rate at which clinically significant patterns can 
be discovered and validated.  Disciplines can be 
bridged in part by a straightforward reference point 
on performance provided by decision-theoretic per-
formance measures.  Nevertheless, performance 
characteristics that are typically reported (SN, SP, 
PPV, NPV) only provide partial information on per-
formance (the method’s performance in the alterna-
tive case).  Researchers may be reluctant to publish 
results that have ‘relatively low’ SN and SP (e.g., 
0.75, 0.8), and yet this level of performance may in 
fact be highly surprising given the sample numbers 
and degree of variability (due to noise variance).  
Stellar results such as high 90’s sensitivity and 
specificity predominate in the published cancer lit-
erature (Table 1), posing the question of whether the 
early reports of high performance may have set the 
standard too high.  Some biological signal and pow-
ers of prognosis can be expected to be lower.  Our 
work focuses on the question: what represents a re-
markable SN? SP? AUC? ACE?  We study this from 
the perspective that proteomic profiling represents 
only one of many different sources of potential clini-
cally significant information, and that combined use 
of panels of biomarkers and other molecular and 
classical diagnostic information is likely to be re-
quired if proteomic profiling becomes widely 
adopted. 

Minimize ACE: Conjecture or Tautology? 
In microarray analysis, most papers describe a new 
algorithm or test for finding differentially expressed 
genes.  This makes is difficult to assess the validity 
of a given analytical strategy (method of analysis).  
We recommend that a standard be considered for the 
assessment of the impact of particular decisions in 
the construction of an analytical strategy, including 
decisions made during pre-processing (Figs. 2 and 
3): Specifically, 

Any method that results in a significant ACE is to 
be preferred over methods that do not achieve sig-
nificance.  All significant methods (at a specified 
degree of significance) are equally justified – for the 
time being. 

It is possible that different methods that achieve 
significant ACE will identify distinct feature sets, in 

which case each feature set is potentially interesting.   
Note that we are not suggesting that reproducibil-

ity is not important; i.e., ideally, the same methods 
on similarly-sized different data sets should achieve 
similar levels of significance.  Indeed, reproducibil-
ity is key; therefore, the methods that yield similar 
levels of significance in repeated experiences are 
also validated. 

Note also that we are also not recommending that 
one should adopt the somewhat opposing position 
that 

The method that minimizes ACE will tend to be 
most significant, and therefore will likely be best jus-
tified. 

In contrast, we consider it likely that clinically 
significant information may exist at a variety of 
scales within these large data sets.  The search for a 
method-any method- with the most significant ACE 
from a single data set seems likely to lead to overes-
timates of the expected clinical utility of a set of bio-
markers.  Comparisons of ACE across cancer types 
and with independent data set would be informative. 

Nonsignificant Results 
Reasons for negative results might include no bio-
logical signal, poor study design or laboratory SOPs, 
poor technology, or low biological signal (requiring 
larger numbers of samples).  It is our position that 
researchers are better informed whether the result is 
significant or not.  For example, a non-significant 
ACE may inform the researcher that they should re-
fine or redirect their research question; an example 
might include early detection of a given disease pro-
viding a negative result in the pre-disease state, sug-
gesting that one might move the focus to early stage 
disease instead of pre-disease. While the clinical 
prediction of a potential outcome during the course 
of disease may not be possible from the pre-
conditioned state, the research might shift focus to-
ward ‘how early can this condition be predicted?’  
While we report few non-significant results, we have 
seen non-significant results from unpublished, pro-
prietary studies of which we cannot report the de-
tails.  The results are unpublished in part due to the 
negative results, and in part due to the changes in the 
experimental design that has resulted due to achiev-
ing a negative result. 



Serum peptide profile classifiers and high-throughput random sampling repeated studies 

Cancer Informatics 2005:1(1)   65 

Relation of PACE to Similar Methods 
PACE creates a distribution of the expected ACE 
under the null condition.  The fixed measure ACE is 
the average classification error over all random sub-
samplings.  This generates a distribution around 
ACE, and the determination of significance could 
involve a comparison of the degree of overlap be-
tween the ACE and PACE distributions.  As we 
have seen, PACE is similar in focus to a number of 
alternative methods with slightly distinct implemen-
tations and foci.  These include the ROC bootstrap 
confidence interval on AUC, confidence interval es-
timation around SN at a fixed SP, and bootstrap 
bands around the ROC curve itself. The bootstrap 
ROC is used to determine a confidence interval 
around an estimated area under the ROC curve 
(AUC); we are most interested in the specific part of 
feature space where a classifier works best, not in 
the overall performance of a classifier over a range 
of stringency, and thus PACE focuses on comparing 
a point estimate of statistic theta to its null distribu-
tion.  A traditional limitation of permutation tests is 
an assumption of symmetry; in our case, we are only 
interested in the lower tail of the PACE distribution.  
In the case of individual performance measures (SN, 
SP) or the composite AUC, one would be interested 
only in the upper tail of ACE. Symmetry is also 
known to be an especially important assumption 
when estimating the confidence interval around the 
AUC (Efron and Tibshirani, 1993). 

The question of relative suitability of these alter-
natives should be determined empirically to deter-
mine if any practical differences exist in this particu-
lar application. So the question is posed: which sta-
tistical assessment of confidence is of most practical 
(applied) interest: the specific measurement of clas-
sification error achieved by x in the learning stage of 
the actual study, or the distribution of the classifica-
tion error in imagined alternative cases?  We prefer 
to make our inferences on the data set at hand, for 
the time being, using imagined alternatives that in-
volve a (hopefully) well-posed null condition. The 
bias-corrected accelerated bootstrap confidence in-
terval (Efron and Tibshirani, 1993), which is range-
respecting and range-preserving (and unbiased, as 
the name suggests) corrects for differences between 
the median AUC of some of the pseudosamples and 

that of the original sample, making the imagined al-
ternative samples more like the actual sample.  This 
method should also be explored in this context. 

Some of these disparate methods could also po-
tentially be combined (e.g., PACE as the null distri-
bution and ROC bootstrapping to assess confidence 
intervals around ACE). This would use the degree of 
overlap of distributions instead of specific instance 
outside of a generated distribution. A more formal 
exploration of these possibilities seems warranted.  

Robustness of PACE and Permutation 
Approaches to the Stark Realities of 
High-Throughput Science 
PACE provide a reference point that is robust to 
many of the vagaries in study design common to 
peptide profiling studies, such as different numbers 
of technical replicates per sample that result from 
the application of QA/QC.  Compared to distribu-
tion-dependent criteria that would otherwise require 
adjustments to degrees of freedom, both PACE and 
the bootstrap are relevant for the data set at hand. 

Caveats  
PACE and the other methods cited here do not pro-
tect incidental partial or complete confounding.  
True validation of the results of any high-throughput 
analysis should involve more than one site, ideally 
with the application of a specific classifier rule 
learned at site A to data generated at site B.  Further, 
to protect against amplification of local biases by 
data preprocessing steps, the preprocessing must be 
wrapped within the permutation loop. 

A Word on Coverage  
It is important to consider in the development and 
evaluation of biomarker-based classification rule 
whether a sample is classifiable; i.e., do the rules 
developed and data at hand provide sufficiently pre-
cise information on a given sample.  The proportion 
of samples that are predictable in a data is defined as 
coverage.  If a strategy is adopted whereby a number 
of samples are not classified, the evaluation scheme 
(whether it be a bootstrap, random subsampling-
derived confidence boundaries, or permutation sig-
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nificance test) should also be forced to not classify 
the same number of samples.  These ‘enforced 
passes’ on a sample must be checked and enforced 
after the prediction stage to conserve the numerical 
and statistical aspects of the study design and data 
set (e.g.s, number of samples; variability within m/z 
class). 

Research is needed to determine the importance 
of asymptotic properties, dependencies of the boot-
strap ROC on the monotonic or jaggedness of the 
ROC curve, and the use of combined distributions 
(i.e., measure of degree of overlap between the 
PACE distribution, as the null distribution, and the 
bootstrap ROC curve as variability in the estimated 
classifier performance measure of interest in sepa-
rate instance of the study). 

Towards a More Complete Characteriza-
tion of the Problem  
In the consideration of further development and im-
provements in analytic methods for the analysis of 
peptide profiles, we assume that detailed descrip-
tions of fundamental characteristics of low-
resolution peptide profiles can be used to help set 
priorities in the construction of particular strategies.  
These descriptions/observations include  
• an acknowledgement of somewhat high mass 

accuracy (0.2-0.4%); 
• a comprehension that individual m/z values are 

not specific (i.e., they are not unique to indi-
vidual peptides), and therefore intensity meas-
ures at a given m/z value reflect sum intensity 
of ‘peptide m/z classes’, which may or may not 
be functionally associated; 

• an understanding that peptides do not map to 
single individual peptides; i.e., they exist two 
or more times in the profile at different m/z 
values as variously protonated forms.  Each 
peptide may have a roughly unique signature, 
and pattern matching forms the basis of pep-
tide fingerprint data mining, but a peptide need 
not occur as a single peak; 

• an understanding that m/z variance will contain 
biological sources (mass shifts due to amino 
acid sequence variation and varying degrees of 

ubiquination and cleavage, binding of peptides 
with others), chemical, and physical compo-
nents (mass drift), and thus models that allow 
the statistical accounting of each of these vari-
ance components are needed; 

• an understanding that high – intensity meas-
urement in SELDI-TOF-MS profiles tend to 
exhibit higher variance, which suggest that 
reliance of peaks for any inference (analyzing 
peaks only, aligning peaks, or normalizing 
profiles to peaks) may add large, unwanted 
components of variance or restrict finding to 
peptides with intensities that are most inaccu-
rately measured; 

• the acknowledgment that the m/z vector is an 
arbitrary vector along which intensity values 
of similarly massed and charged peptides are 
arranged, and, as an arbitrary index in and of 
itself may require (or deserve) no profound 
biological explanation and may or may not 
offer a profound biological insight related to 
the clinical questions at hand beyond a guide 
to identity of peptide by pattern matching; 

• observations that features determined to be 
significant tend to be locally correlated and 
that long-range correlations also exist, and that 
both artifactual  and biologically important 
correlations and anti-correlations may exist at 
both distances; 

• an expectation that correlations may exist that 
reflect protonated forms of peptides and that 
some correlation/anticorrelation pairs may re-
flect real peptide biology, such as enzymatic 
cleavage cascades; 

• similarly, the observation that at least part of 
the local autocorrelation observed in the pro-
file is likely due to poor resolution (mass 
drift), and reflects a physical property of the 
profiles (instrument measurement error and 
resolving power). It may also reflect smooth-
ing due to natural biological variation in the 
population from which the samples were 
drawn, the effects of summing intensities of 
distinct peptides that share similar but not 
identical m/z values.  One might consider 
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whether the local correlations all reflect real 
biological properties of single peptides at par-
ticular m/z positions, and, if not, they may of-
fer no biological insight and may require no 
biological explanation (i.e. local autocorrela-
tion may be simple artifact of degree of resolu-
tion of the instrument and the lack of specific-
ity of m/z values). 

These descriptions may help motivate research on 
variance corrections, de-correlation, the use of PCA, 
profile alignment strategies, and attempts at transfor-
mation. 

Other Open Questions 
As high-throughput genomic and proteomic data be-
come less expensive, and the laboratory equipment 
spreads into an increasing number of facilities, it 
seems likely that different laboratories will study the 
sample problem with completely independent effort.  
Published data sets, therefore, represent profoundly 
useful potential source of corroboration, or valida-
tion, of biomarker sets that might be expected to ex-
hibit reproducible differences in large portions of the 
patient population.  A careful characterization and 
validation of those differences, as a step that is inde-
pendent of the question of potential clinical utility, is 
essential in these studies. True validation by planned 
repeated experiments may seem daunting, or unwar-
ranted at this early stage, and the tendency will be to 
attempt to validate markers deemed to be significant 
in a small study using other technology 
(immunohistochemistry, for example). In this case, 
absence of validation of specific proteins with other 
technology is not complete refutation due to the po-
tential for idiosyncrasies in this new application of 
mass spec technology.  Computational validation 
applied at the step of feature selection alone could 
prove invaluable (i.e., which features are reproduci-
bly different between cases and controls, responders 
and nonresponders, in independently analyzed sub-
sets or splits of the data samples?) 

Large multi-year and multi-site studies 
As unlikely as large-scale repeated studies may 
seem, it seems imminent that studies of peptide pro-
files from thousands of patients and normal donors 

will be forthcoming.  What are the practical prob-
lems in such a setting?   We would advocate avoid-
ing the temptation to view one large data set (say, 
5,000 patient, 5,000 normal) as a single study, and 
would recommend analysis of multiple, random in-
dependent (non-overlapping) subsets, which would 
provide true validation of feature selection methods 
and classification inferences. Such large studies will 
occur over long timer periods.  Laboratory condi-
tions change, and manufacturers change kits and 
protocols; thus, to maximize the generalizability of 
the performance characteristics of a trained classi-
fier, training and test sets should be randomly se-
lected and blinded.  We must remember that learning 
is asymptotic.  Therefore, researchers should avoid 
evaluating a classifier built on training data set 1 
produced at time 1 with testing set produced at time 
2; instead, they should randomize the data over the 
entire time period, even if this means re-learning a 
classifier after publishing an initially internally valid 
classifier using data set 1.  This approach still in-
volves training, but protects against a biased (overly 
pessimistic) result due to shifts in laboratory condi-
tions. 

Future Directions in Peptide Profiling 
Given that the distribution of pure noise variance 
over the m/z range is not uniform under the null con-
dition, univariate feature selection methods such as 
t-tests, Fisher’s score, area under the curve (AUC) 
and their nonparametric alternatives are perhaps best 
applied as permutation tests to attempt to equalize 
the Type 1 error rate over the m/z range included in 
an analysis.  When combined with PACE, this 
greatly increases the computational burden of ana-
lyzing even a small set of profiles, but the pay-off 
should be immense.  Features that are not significant 
under the parametric, distribution-dependent tests 
can become significant under the permutation test 
for significance, and the reverse shifts are also possi-
ble.  This becomes especially important when using 
significance levels to select n-ranked features.  
When permutation feature selection methods are 
then combined with classification algorithms such as 
PCA, SVM, or nearest neighbor algorithms, and 
then are evaluated by PACE or bootstrap methods, 
this clearly will require a large network dedicated to 
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cancer proteomic analysis, and a consortium of de-
velopers dedicated to bringing well-known existing 
and new algorithms for analysis to bear on the im-
portant problems in cancer research, including early 
detection, recurrence, progression and therapy out-
come.  A plan to use the rational unified process out-
lined in caCORE (Covitz et al., 2003) as a software 
development protocol will help combine the ener-
gies of participants and developers in the Integrative 
Cancer Workspace of NCI’s caBIG workspace with 
those of participants in the EDRN is under develop-
ment.  We intend to build a parallel-processing 
friendly analysis framework so researchers can ob-
jectively evaluate and report the effects of the deci-
sions they make during each stage in analysis. Even 
so, support of analysis for small (pilot) studies is 
needed, and we can reasonably expect that optimal 
analysis solutions to vary with study design. The re-
analysis of published data sets will also be key to 
sorting through the method space, so the design of 
such a solution might include data sets ‘on-tap’, as 
w e  h a v e  d o n e  f o r  c a G E D A 
(http://bioinformatics.upmc.edu/GE2/GEDA.html) 
for microarray data analysis (Patel and Lyons-
Weiler, 2004). Simulations will also be key.  We 
encourage sites to make their raw data 
(unpreprocessed) and source code available under an 
open source license to resolve analysis challenges as 
rapidly and as directly as possible. 
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Figure A3: PACE analysis using a SVM-based classifier using the J5 scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Appendix A: PACE examples for the UPCI pancreatic cancer dataset (Zeh et al., 
unpublished) 
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Figure A1:  PACE analysis using a SVM-based classifier using the AUC scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  In these figures, the upper 
solid line represents the Mean Achieved Classification Error (MACE) under the null hypothesis derived using sample 
class label permutations.  The next two dotted lines represent the 95th and 99th percentile, and the lower solid line repre-
sents the ACE for the classifier (averaged over iterations). 
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Figure A2: PACE analysis using a SVM-based classifier using the Fisher scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure A6: PACE analysis using a SVM-based classifier using the weighted separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure A4: PACE analysis using a SVM-based classifier using the simple separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure A5: PACE analysis using a SVM-based classifier using the t-test scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure B3: PACE analysis using a SVM-based classifier using the J5 scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  
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Figure B1: PACE analysis using a SVM-based classifier using the AUC scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  

Appendix B: PACE examples for the February ovarian cancer dataset (Petricoin 
et al., 2002) 
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Figure B2: PACE analysis using a SVM-based classifier using the Fisher scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  
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Figure B6: PACE analysis using a SVM-based classifier using the weighted separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection.  
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Figure B5: PACE analysis using a SVM-based classifier using the t-test scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  

Figure B4: PACE analysis using a SVM-based classifier using the simple separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection.  
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Appendix C: PACE examples for the April ovarian cancer dataset (Petricoin et al., 
2002) 

Figure C3: PACE analysis using a SVM-based classifier using the J5 scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure C2: PACE analysis using a SVM-based classifier using the Fisher scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 

Figure C1: PACE analysis using a SVM-based classifier using the AUC scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection.  
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Figure C6: PACE analysis using a SVM-based classifier using the weighted separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure C4: PACE analysis using a SVM-based classifier using the simple separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 

Figure C5: PACE analysis using a SVM-based classifier using the t-test scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure D3: PACE analysis using a SVM-based classifier using the J5 scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Appendix D: PACE examples for the prostate cancer dataset (Qu et al., 2002) 
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Figure D1: PACE analysis using a SVM-based classifier using the AUC scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 

Figure D2: PACE analysis using a SVM-based classifier using the Fisher scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure D6: PACE analysis using a SVM-based classifier using the weighted separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 
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Figure D4: PACE analysis using a SVM-based classifier using the simple separability scoring criterion, with a 0.6 MAC 
threshold. Left Panel: performance without peak selection. Right panel: performance with peak selection. 

Figure D5: PACE analysis using a SVM-based classifier using the t-test scoring criterion, with a 0.6 MAC threshold. Left 
Panel: performance without peak selection. Right panel: performance with peak selection. 
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