CS 441 Discrete Mathematics for CS

Lecture 8

Sets and set operations: cont. Functions.

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Set

- Definition: A set is a (unordered) collection of objects. These objects are sometimes called elements or members of the set. (Cantor's naive definition)
- Examples:
- Vowels in the English alphabet

$$
V=\{a, e, i, o, u\}
$$

- First seven prime numbers.

$$
X=\{2,3,5,7,11,13,17\}
$$

Sets - review

- A subset of B:
- A is a subset of B if all elements in A are also in B.
- Proper subset:
- A is a proper subset of B, if A is a subset of B and $A \neq B$
- A power set:
- The power set of A is a set of all subsets of A

Sets - review

- Cardinality of a set A:
- The number of elements of in the set
- An n-tuple
- An ordered collection of \mathbf{n} elements
- Cartesian product of A and B
- A set of all pairs such that the first element is in A and the second in B

Set operations

Set union:

- $A=\{1,2,3,6\} \quad B=\{2,4,6,9\}$
- $A \cup B=\{1,2,3,4,6,9\}$

Set intersection:

- $A=\{1,2,3,6\} \quad B=\{2,4,6,9\}$
- $A \cap B=\{2,6\}$

Set difference:

- $A=\{1,2,3,6\} \quad B=\{2,4,6,9\}$
- $\mathrm{A}-\mathrm{B}=\{1,3\}$
- $B-A=\{4,9\}$

Complement of a set

Definition: Let U be the universal set: the set of all objects under the consideration.
Definition: The complement of the set \mathbf{A}, denoted by \bar{A}, is the complement of A with respect to U.

- Alternate: $\overline{\mathrm{A}}=\{\mathrm{x} \mid \mathrm{x} \notin \mathrm{A}\}$

Example: U=\{1,2,3,4,5,6,7,8\} $A=\{1,3,5,7\}$

- $\bar{A}=\{2,4,6,8\}$

Set identities

Set Identities (analogous to logical equivalences)

- Identity
$-\mathrm{A} \cup \varnothing=\mathrm{A}$
$-\mathrm{A} \cap \mathrm{U}=\mathrm{A}$
- Domination
$-A \cup U=U$
$-\mathrm{A} \cap \varnothing=\varnothing$
- Idempotent
$-\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
$-\mathrm{A} \cap \mathrm{A}=\mathrm{A}$

Set identities

- Double complement
$-\overline{\overline{\mathrm{A}}}=\mathrm{A}$
- Commutative
$-A \cup B=B \cup A$
$-\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- Associative
$-A \cup(B \cup C)=(A \cup B) \cup C$
$-A \cap(B \cap C)=(A \cap B) \cap C$
- Distributive
$-A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$-A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Set identities

- DeMorgan
$-\overline{(\mathrm{A} \cap \mathrm{B})}=\quad \overline{\mathrm{A}} \cup \overline{\mathrm{B}}$
$-\overline{(A \cup B)}=\quad \bar{A} \cap \bar{B}$
- Absorbtion Laws
$-A \cup(A \cap B)=A$
$-A \cap(A \cup B)=A$
- Complement Laws
$-\mathrm{A} \cup \overline{\mathrm{A}}=\mathrm{U}$
$-\mathrm{A} \cap \overline{\mathrm{A}}=\varnothing$

Set identities

- Set identities can be proved using membership tables.
- List each combination of sets that an element can belong to. Then show that for each such a combination the element either belongs or does not belong to both sets in the identity.
- Prove: $(\overline{\mathrm{A} \cap \mathrm{B}})=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$

A	B	\bar{A}	\bar{B}	$\overline{A \cap B}$	$\bar{A} \cup \bar{B}$
1	1	0	0	0	0
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

Generalized unions and itersections

Definition: The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

$$
\bigcup_{i=1}^{n} A_{i}=\left\{A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right\}
$$

Example:

- Let $A_{i}=\{1,2, \ldots, \mathrm{i}\} \quad \mathrm{i}=1,2, \ldots, \mathrm{n}$
-

$$
\bigcup_{i=1}^{n} A_{i}=\{1,2, \ldots, \quad n\}
$$

Generalized unions and intersections

Definition: The intersection of a collection of sets is the set that contains those elements that are members of all sets in the collection.

$$
\bigcap_{i=1}^{n} A_{i}=\left\{A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right\}
$$

Example:

- Let $A_{i}=\{1,2, \ldots, \mathrm{i}\} \quad \mathrm{i}=1,2, \ldots, \mathrm{n}$

$$
\bigcap_{i=1}^{n} A_{i}=\{1\}
$$

Computer representation of sets

- How to represent sets in the computer?
- One solution: Data structures like a list
- A better solution:
- Assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is present otherwise use 0
Example:
All possible elements: U=\{1 234 5\}
- Assume $A=\{2,5\}$
- Computer representation: A = 01001
- Assume $\mathrm{B}=\{1,5\}$
- Computer representation: B = 10001

Computer representation of sets

Example:

- A = 01001
- $B=10001$
- The union is modeled with a bitwise or
- $\mathrm{A} \vee \mathrm{B}=11001$
- The intersection is modeled with a bitwise and
- $\mathrm{A} \wedge \mathrm{B}=00001$
- The complement is modeled with a bitwise negation
- $\overline{\mathrm{A}}=10110$

Functions

Functions

- Definition: Let A and B be two sets. A function from A to \mathbf{B}, denoted $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ to denote the assignment of b to an element a of A by the function f.

Functions

- Definition: Let A and B be two sets. A function from \mathbf{A} to \mathbf{B}, denoted $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ to denote the assignment of b to an element a of A by the function f.

Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the two sets
2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Assume f is defined as:
- $1 \rightarrow \mathrm{c}$
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow \mathrm{c}$
- Is f a function?
- Yes. since $f(1)=c, f(2)=a, f(3)=c$. each element of A is assigned an element from B

Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the two sets
2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Assume g is defined as
- $1 \rightarrow \mathrm{c}$
- $1 \rightarrow$ b
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow$ c
- Is g a function?
- No. $g(1)=$ is assigned both c and b.

Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the two sets
2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A=\{0,1,2,3,4,5,6,7,8,9\}, B=\{0,1,2\}$
- Define h: A \rightarrow B as:
- $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 3$.
- (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$
$3 \rightarrow 0$
- $1 \rightarrow 1$
$4 \rightarrow 1$
- $2 \rightarrow 2$
...

Important sets

Definitions: Let f be a function from A to B .

- We say that A is the domain of f and B is the codomain of f.
- If $f(a)=b, b$ is the image of \mathbf{a} and \mathbf{a} is a pre-image of \mathbf{b}.
- The range of \mathbf{f} is the set of all images of elements of A. Also, if f is a function from A to B , we say f maps A to B .
Example: Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Assume f is defined as: $1 \rightarrow \mathrm{c}, 2 \rightarrow \mathrm{a}, 3 \rightarrow \mathrm{c}$
- What is the image of 1 ?
- $1 \rightarrow \mathrm{c} \quad \mathrm{c}$ is the image of 1
- What is the pre-image of a?
- $2 \rightarrow \mathrm{a} \quad 2$ is a pre-image of a .
- Domain of f ? $\{1,2,3\}$
- Codomain of f ? $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Range of f ? $\{a, c\}$

Image of a subset

Definition: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so that $f(S)=\{f(s) \mid s \in S\}$.

Example:

- Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$ and $f: 1 \rightarrow c, 2 \rightarrow a, 3 \rightarrow c$
- Let $S=\{1,3\}$ then image $f(S)=$?

Image of a subset

Definition: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so that $f(S)=\{f(s) \mid s \in S\}$.

Example:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{f}: 1 \rightarrow \mathrm{c}, 2 \rightarrow \mathrm{a}, 3 \rightarrow \mathrm{c}$
- Let $S=\{1,3\}$ then image $f(S)=\{c\}$.

Injective function

Definition: A function f is said to be one-to-one, or injective, if and only if $f(x)=f(y)$ implies $x=y$ for all x, y in the domain of f. A function is said to be an injection if it is one-to-one.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $\mathrm{x} \neq \mathrm{y}$. This is the contrapositive of the definition.

Not injective

Injective function

Injective functions

Example 1: Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

- Define fas
$-1 \rightarrow \mathrm{c}$
$-2 \rightarrow \mathrm{a}$
$-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since $f(1)=f(3)=c$, and $1 \neq 3$.
Example 2: Let $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$, where $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$.
- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) $=\mathrm{g}(\mathrm{b})$, i.e., $2 \mathrm{a}-1=2 \mathrm{~b}-1=>2 \mathrm{a}=2 \mathrm{~b}$
-• $\quad=>a=b$.

Surjective function

Definition: A function f from A to B is called onto, or surjective, if and only if for every $b \in B$ there is an element $a \in A$ such that $f(a)=b$.
Alternative: all co-domain elements are covered

Surjective functions

Example 1: Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

- Define f as
- $1 \rightarrow$ c
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow$ c
- Is f an onto?
- No. f is not onto, since $b \in B$ has no pre-image.

Example 2: $\mathrm{A}=\{0,1,2,3,4,5,6,7,8,9\}, \mathrm{B}=\{0,1,2\}$

- Define h: $\mathrm{A} \rightarrow \mathrm{B}$ as $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 3$.
- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6 , a pre-image of 1 is 4 , a pre-image of 2 is 8 .

Bijective functions

Definition: A function f is called a bijection if it is both one-toone and onto.

Bijective functions

Example 1:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Define f as
- $1 \rightarrow \mathrm{c}$
- $2 \rightarrow \mathrm{a}$
- $3 \rightarrow$ b
- Is f is a bijection? Yes. It is both one-to-one and onto.
- Note: Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true for A an infinite set. Define $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$, where $\mathrm{f}(\mathrm{z})=2 * \mathrm{z}$. f is one-to-one but not onto (3 has no pre-image).

Bijective functions

Example 2:

- Define g : W $\rightarrow \mathrm{W}$ (whole numbers), where $\mathrm{g}(\mathrm{n})=[\mathrm{n} / 2]$ (floor function).
- $0 \rightarrow[0 / 2]=[0]=0$
- $1 \rightarrow[1 / 2]=[1 / 2]=0$
- $2 \rightarrow[2 / 2]=[1]=1$
- $3 \rightarrow[3 / 2]=[3 / 2]=1$
-
- Is g a bijection?
- No. g is onto but not $1-1(\mathrm{~g}(0)=\mathrm{g}(1)=0$ however $0 \neq 1$.

