

			Set i	denti	ties		
• S	et identi	ties can	be prov	ved usin	g memb	oership t	ables.
• L T b • P	ist each of hen show elongs of rove: (\overline{A})	combination with a that for $a = b = a = b$ and $a = b = b = b = b = b = b = b = b = b = $	tion of s r each su t belong $\overline{A} \cup \overline{B}$	ets that ich a co g to both	an eleme mbination sets in t	ent can b on the ele the ident	elong to. ement either ity.
	A	В	Ā	B	$\overline{A \cap B}$	ĀŪĒ	
	1	1	0	0	0	0	
	1	0	0	1	0	0	
	0	1	1	0	0	0	
	0	0	1	1	1	1	

<text><equation-block><equation-block><section-header><equation-block><equation-block><equation-block><equation-block>

Computer representation of sets	
Example:	
• $A = 01001$	
• B = 10001	
• The union is modeled with a bitwise or	
• $A \lor B = 11001$	
• The intersection is modeled with a bitwise and	
• $A \wedge B = 00001$	
• The complement is modeled with a bitwise negation	
• Ā =10110	
CS 441 Discrete mathematics for CS	M. Hauskrecht

Representing functions
Representations of functions:
1. Explicitly state the assignments in between elements of the two sets
2. Compactly by a formula. (using 'standard' functions)
Example1:
• Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
• Assume f is defined as:
• $1 \rightarrow c$
• $2 \rightarrow a$
• $3 \rightarrow c$
• Is f a function ?
• Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B
M. Hauskrecht

Rep	resenting functions
Representations of f	unctions:
1. Explicitly state two sets	the assignments in between elements of the
2. Compactly by a	a formula. (using 'standard' functions)
Example 3:	
• $A = \{0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 3, 4, 5, 6, 1, 2, 3, 3, 3, 5, 5, 1, 2, 3, 3, 3, 5, 5, 1, 2, 3, 3, 3, 5, 5, 1, 2, 3, 3, 5, 5, 1, 2, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 3, 3, 3, 5, 1, 2, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	$\{7, 8, 9\}, B = \{0, 1, 2\}$
• Define h: $A \rightarrow B$ a	as:
• $h(x) = x \mod x$	d 3.
• (the result is	the remainder after the division by 3)
• Assignments:	• <i>`</i>
• $0 \rightarrow 0$	$3 \rightarrow 0$
• 1→ 1	$4 \rightarrow 1$
• $2 \rightarrow 2$	•••
	M. Hauskr

Bijective functions

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f is a bijection? **Yes.** It is both one-to-one and onto.
- Note: Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true for A an infinite set. Define $f : Z \rightarrow Z$, where f(z) = 2 * z. f is one-to-one but not onto (3 has no pre-image).

M. Hauskrecht

