CS 441 Discrete Mathematics for CS
 Lecture 6

Informal proofs

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Proofs

- The truth value of some statements about the world are obvious and easy to assess
- The truth of other statements may not be obvious, ...
.... But it may still follow (be derived) from known facts about the world

Proof: shows that the truth value of such a statement follows from (or can be inferred) from the truth value of other statements

Important questions:

- When is the argument correct?
- How to construct a correct argument, what method to use?

Theorems

- Theorem: a statement that can be shown to be true.
- Typically the theorem looks like this:
$(\mathrm{p} 1 \wedge \mathrm{p} 2 \wedge \mathrm{p} 3 \wedge \ldots \wedge \mathrm{pn}) \rightarrow \mathrm{q}$

- Example:

Fermat's Little theorem:
If p is a prime and a is an integer not divisible by D , then: $a^{p-1} \equiv 1 \bmod p$
conclusion

Formal proofs

Allow us to infer from new True statements from known True statements

Formal proofs

Steps of the proof for statements in the propositional logic are argued using:

- Equivalence rules
- Rules of inference (e.g. modus ponens)

Proofs using rules of inference

Translations:

- Assumptions: $\neg \mathrm{p} \wedge \mathrm{q}, \mathrm{r} \rightarrow \mathrm{p}, \neg \mathrm{r} \rightarrow \mathrm{s}, \mathrm{s} \rightarrow \mathrm{t}$
- We want to show: t

Proof:

- 1. $\neg \mathrm{p} \wedge \mathrm{q}$ Hypothesis
- 2. $\neg \mathrm{p}$ Simplification
- 3. r \rightarrow p Hypothesis
- 4. $\neg \mathrm{r} \quad$ Modus tollens (step 2 and 3)
- 5. $\neg \mathrm{r} \rightarrow \mathrm{s}$ Hypothesis
- 6. s Modus ponens (steps 4 and 5)
- 7. $\mathrm{s} \rightarrow \mathrm{t}$ Hypothesis
- 8.t Modus ponens (steps 6 and 7)
- end of proof

Informal proofs

Proving theorems in practice:

- The steps of the proofs are not expressed in any formal language as e.g. propositional logic
- Steps are argued less formally using English, mathematical formulas and so on
- One must always watch the consistency of the argument made, logic and its rules can often help us to decide the soundness of the argument if it is in question
- We use (informal) proofs to illustrate different methods of proving theorems

Methods of proving theorems

Basic methods to prove the theorems:

- Direct proof
$-\mathrm{p} \rightarrow \mathrm{q}$ is proved by showing that if p is true then q follows
- Indirect proof
- Show the contrapositive $\neg q \rightarrow \neg p$. If $\neg q$ holds then $\neg p$ follows
- Proof by contradiction
- Show that $(\mathrm{p} \wedge \neg \mathrm{q})$ contradicts the assumptions
- Proof by cases
- Proofs of equivalence
$-\mathrm{p} \leftrightarrow \mathrm{q}$ is replaced with $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$

Sometimes one method of proof does not go through as nicely as the other method. You may need to try more than one approach.

Direct proof

- $p \rightarrow q$ is proved by showing that if p is true then q follows
- Example: Prove that "If n is odd, then n^{2} is odd."

Proof:

- Assume the hypothesis is true, i.e. suppose n is odd.
- Then $\mathrm{n}=2 \mathrm{k}+1$, where k is an integer.

$$
\begin{aligned}
\mathrm{n}^{2} & =(2 \mathrm{k}+1)^{2} \\
& =4 \mathrm{k}^{2}+4 \mathrm{k}+1 \\
& =2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1
\end{aligned}
$$

- Therefore, n^{2} is odd.

Indirect proof

- To show $\mathrm{p} \rightarrow \mathrm{q}$ prove its contrapositive $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$
- Why? $\mathbf{p} \rightarrow \mathbf{q}$ and $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$ are equivalent !!!
- Assume $\neg q$ is true, show that $\neg p$ is true.

Example: Prove If $3 n+2$ is odd then n is odd.
Proof:

- Assume n is even, that is $\mathrm{n}=2 \mathrm{k}$, where k is an integer.
- Then: $3 n+2=3(2 k)+2$

$$
\begin{aligned}
& =6 \mathrm{k}+2 \\
& =2(3 \mathrm{k}+1)
\end{aligned}
$$

- Therefore $3 n+2$ is even.
- We proved \neg " n is odd" $\rightarrow \neg$ " $3 n+2$ is odd". This is equivalent to " $3 n+2$ is odd" \rightarrow " n is odd".

Proof by contradiction

- We want to prove $p \rightarrow q$
- The only way to reject (or disprove) $p \rightarrow q$ is to show that ($p \wedge$ $\neg q)$ can be true
- However, if we manage to prove that either q or $\neg \mathrm{p}$ is True then we contradict ($\mathbf{p} \wedge \neg \mathbf{q}$)
- and subsequently $\mathbf{p} \rightarrow \mathbf{q}$ must be true
- Proof by contradiction. Show that the assumption ($\mathbf{p} \wedge \neg \mathbf{q}$) leads either to q or $\neg \mathrm{p}$ which generates a contradiction.

Proof by contradiction

- We want to prove $\mathrm{p} \rightarrow \mathrm{q}$
- To reject $\mathbf{p} \rightarrow \mathbf{q}$ show that ($\mathbf{p} \wedge \neg \mathbf{q}$) can be true
- To reject ($\mathbf{p} \wedge \neg \mathbf{q}$) show that either \mathbf{q} or $\neg \mathbf{p}$ is True

Example: Prove If $3 \mathbf{n}+2$ is odd then \mathbf{n} is odd.
Proof:

- Assume $3 n+2$ is odd and \mathbf{n} is even, that is $n=2 k$, where k an integer.

Proof by contradiction

- We want to prove p \rightarrow q
- To reject $\mathbf{p} \rightarrow \mathbf{q}$ show that $(\mathbf{p} \wedge \neg \mathbf{q})$ can be true
- To reject ($\mathbf{p} \wedge \neg \mathbf{q}$) show that either \mathbf{q} or $\neg \mathbf{p}$ is True

Example: Prove If $3 n+2$ is odd then n is odd.
Proof:

- Assume $3 n+2$ is odd and n is even, that is $n=2 k$, where k an integer.
- Then: $3 n+2=3(2 k)+2$

$$
\begin{aligned}
& =6 \mathrm{k}+2 \\
& =2(3 \mathrm{k}+1)
\end{aligned}
$$

- Thus $3 n+2$ is even. This is a contradiction with the assumption that $3 \mathbf{n}+2$ is odd. Therefore \mathbf{n} is odd.

Vacuous proof

We want to show $p \rightarrow q$

- Suppose p (the hypothesis) is always false
- Then $\mathrm{p} \rightarrow \mathrm{q}$ is always true.

Reason:

- $\mathrm{F} \rightarrow \mathrm{q}$ is always T , whether q is True or False

Example:

- Let $\mathrm{P}(\mathrm{n})$ denotes "if $\mathrm{n}>1$ then $\mathrm{n}^{2}>\mathrm{n}$ " is TRUE.
- Show that $\mathrm{P}(0)$.

Proof:

- For $\mathrm{n}=0$ the premise is False. Thus $\mathrm{P}(0)$ is always true.

Trivial proofs

We want to show $p \rightarrow q$

- Suppose the conclusion q is always true
- Then the implication $\mathrm{p} \rightarrow \mathrm{q}$ is trivially true.
- Reason:
- $p \rightarrow T$ is always T, whether p is True or False

Example:

- Let $\mathrm{P}(\mathrm{n})$ is "if $\mathrm{a}>=\mathrm{b}$ then $\mathrm{a}^{\mathrm{n}}>=\mathrm{b}^{\mathrm{n}}$ "
- Show that $\mathrm{P}(0)$

Proof:
$\mathrm{a}^{0}>=\mathrm{b}^{0}$ is $1=1$ trivially true.

Proof by cases

- We want to show p1 $\vee \mathrm{p} 2 \vee \ldots \vee \mathrm{pn} \rightarrow \mathrm{q}$
- Note that this is equivalent to

$$
-(\mathrm{p} 1 \rightarrow \mathrm{q}) \wedge(\mathrm{p} 2 \rightarrow \mathrm{q}) \wedge \ldots \wedge(\mathrm{pn} \rightarrow \mathrm{q})
$$

- Why?
- $\mathrm{p} 1 \vee \mathrm{p} 2 \vee \ldots \vee \mathrm{pn} \rightarrow \mathrm{q}<=>$
(useful)
- $\neg(\mathrm{p} 1 \vee \mathrm{p} 2 \vee \ldots \vee \mathrm{pn}) \vee \mathrm{q}<=>$
(De Morgan)
- ($\neg \mathrm{p} 1 \wedge \neg \mathrm{p} 2 \wedge \ldots \wedge \neg \mathrm{pn}) \vee \mathrm{q}<=>$ (distributive)
- $(\neg \mathrm{p} 1 \vee \mathrm{q}) \wedge(\neg \mathrm{p} 2 \vee \mathrm{q}) \wedge \ldots \wedge(\neg \mathrm{pn} \vee \mathrm{q})<=>$ (useful)
- $(\mathrm{p} 1 \rightarrow \mathrm{q}) \wedge(\mathrm{p} 2 \rightarrow \mathrm{q}) \wedge \ldots \wedge(\mathrm{pn} \rightarrow \mathrm{q})$

Proof by cases

We want to show $\mathrm{p} 1 \vee \mathrm{p} 2 \vee \ldots \vee \mathrm{pn} \rightarrow \mathrm{q}$

- Equivalent to $(\mathrm{p} 1 \rightarrow \mathrm{q}) \wedge(\mathrm{p} 2 \rightarrow \mathrm{q}) \wedge \ldots \wedge(\mathrm{pn} \rightarrow \mathrm{q})$

Prove individual cases as before. All of them must be true.

Example: Show that $|\mathrm{x}| \mathrm{y}|=|\mathrm{xy}|$.
Proof:

- 4 cases:
- $x>=0, y>=0$
- $x>=0, y<0$
- $x<0, y>=0 \quad \mid$
- $\mathrm{x}<0,, \mathrm{y}<0 \mid$

Proof by cases

We want to show $\mathrm{p} 1 \vee \mathrm{p} 2 \vee \ldots \vee \mathrm{pn} \rightarrow \mathrm{q}$

- Equivalent to $(\mathrm{p} 1 \rightarrow \mathrm{q}) \wedge(\mathrm{p} 2 \rightarrow \mathrm{q}) \wedge \ldots \wedge(\mathrm{pn} \rightarrow \mathrm{q})$

Prove individual cases as before. All of them must be true.

Example: Show that $|x||y|=|x y|$.
Proof:

- 4 cases:
- $x>=0, y>=0 \quad x y>0$ and $|x y|=x y=|x||y|$
- $x>=0, y<0 \quad x y<0$ and $|x y|=-x y=x(-y)=|x||y|$
- $x<0, y>=0 \quad x y<0$ and $|x y|=-x y=(-x) y=|x||y|$
- $x<0,, y<0 \quad x y>0$ and $|x y|=(-x)(-y)=|x||y|$
- All cases proved.

Proof of equivalences

We want to prove $\mathbf{p} \leftrightarrow \mathbf{q}$

- Statements: pif and only if q.
- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \wedge(q \rightarrow p)]$
- Both implications must hold.

Example:

- Integer is odd if and only if $\mathrm{n} \wedge 2$ is odd.

Proof of ($\mathbf{p} \rightarrow \mathbf{q}$):

- ($\mathbf{p} \rightarrow \mathbf{q}$) If n is odd then $\mathrm{n}^{\wedge} 2$ is odd
- we use a direct proof
- Suppose n is odd. Then $\mathrm{n}=2 \mathrm{k}+1$, where k is an integer.
- $\mathrm{n}^{\wedge} 2=(2 \mathrm{k}+1)^{\wedge} 2=4 \mathrm{k} \wedge 2+4 \mathrm{k}+1=2(2 \mathrm{k} \wedge 2+2 \mathrm{k})+1$
- Therefore, $\mathrm{n}^{\wedge} 2$ is odd.

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Note that $\mathrm{p} \leftrightarrow \mathrm{q}$ is equivalent to $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})]$
- Both implications must hold.
- Integer is odd if and only if $\mathrm{n} \wedge 2$ is odd.

Proof of (q $\rightarrow \mathbf{p}$):

- $(q \rightarrow p)$: if $n^{\wedge} 2$ is odd then n is odd
- we use an indirect proof ($\neg \mathrm{p} \rightarrow \neg \mathrm{q})$ is a contrapositive
- n is even that is $\mathrm{n}=2 \mathrm{k}$,
- then $\mathrm{n}^{\wedge} 2=4 \mathrm{k} \wedge 2=2(2 \mathrm{k} \wedge 2)$
- Therefore $n \wedge 2$ is even. Done proving the contrapositive.

Since both $(p \rightarrow q)$ and $(q \rightarrow p)$ are true the equivalence is true

Proofs with quantifiers

- Existence proof - sentences expressed with an existential quantifiers
- Constructive
- Find an example (through search) that shows the statement holds.
- Nonconstructive
- Show the statement holds for one example but we do not have the witness example. Typically relies on the proof by contradiction - negate the existentially quantified statement and show that it implies a contradiction.

Proofs with quantifiers

- Universally quantified statements
- Prove the property holds for all examples
- can be tricky
- proof by cases to divides the proof to the different subgroups may help
- Counterexamples:
- use to disprove universal statements
- Similar to constructive proofs for existentially

