

Indirect proof	
• To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$	
• Why? $\mathbf{p} \rightarrow \mathbf{q}$ and $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$ are equivalent !!!	
• Assume $\neg q$ is true, show that $\neg p$ is true.	
Example: Prove If $3n + 2$ is odd then n is odd. Proof:	
• Assume n is even, that is $n = 2k$, where k is an integer.	
• Then: $3n + 2 = 3(2k) + 2$	
= 6k + 2	
= 2(3k+1)	
• Therefore $3n + 2$ is even.	
• We proved \neg "n is odd" \rightarrow \neg "3n + 2 is odd". This is equivalent to "3n + 2 is odd" \rightarrow "n is odd".	
CS 441 Discrete mathematics for CS	M. Hauskrecht

Vacuous proof	
We want to show $p \rightarrow q$	
• Suppose p (the hypothesis) is always false	
• Then $p \rightarrow q$ is always true.	
Reason:	
• $F \rightarrow q$ is always T, whether q is True or False	
 Example: Let P(n) denotes "if n > 1 then n²> n" is TRUE. Show that P(0). Proof: For n=0 the premise is False. Thus P(0) is always true. 	
CS 441 Discrete mathematics for CS	M. Hauskrecht

Proof by cases	5
 We want to show p1 ∨ p2 ∨ ∨ pn - Note that this is equivalent to (p1 → q) ∧ (p2 → q) ∧ ∧ (pn - Why? p1 ∨ p2 ∨ ∨ pn → q <=> ¬ (p1 ∨ p2 ∨ ∨ pn) ∨ q <=> (¬p1 ∧ ¬p2 ∧ ∧ ¬pn) ∨ q <=> (¬p1 ∨ q) ∧ (¬p2 ∨ q) ∧ ∧ (¬pn ∨ q) (p1 → q) ∧ (p2 → q) ∧ ∧ (pn → q) 	<pre> (useful) (De Morgan) (distributive) q) <=> (useful) </pre>
CS 441 Discrete mathematics for C	S M. Hauskrecht

Proof by cases			
We want to show $p1 \lor p2 \lor \ldots \lor pn \to q$ • Equivalent to $(p1 \lor q) \land (p2 \lor q) \land (pn \to q)$	a)		
• Equivalent to $(p1 \rightarrow q) \land (p2 \rightarrow q) \land \land (pn \rightarrow q)$ Prove individual cases as before. All of them must b	1		
Example: Show that $ x y = xy $.			
Proof:			
• 4 cases:			
• $x \ge 0$, $y \ge 0$ $xy \ge 0$ and $ xy = xy = x y $			
• $x \ge 0$, $y < 0$ $xy < 0$ and $ xy = -xy = x (-y) = x y $			
• $x < 0, y \ge 0$ $xy < 0$ and $ xy = -xy = (-x) y = x y $			
• $x < 0$, $y < 0$ $xy > 0$ and $ xy = (-x)(-y) = x y $			
• All cases proved.			
CS 441 Discrete mathematics for CS	M. Hauskrecht		

Proof of equivalences

We want to prove $p \leftrightarrow q$

- Statements: p if and only if q.
- Note that $p \leftrightarrow q$ is equivalent to $[(p \rightarrow q) \land (q \rightarrow p)]$
- Both implications must hold.

Example:

• Integer is odd if and only if n^2 is odd.

Proof of $(p \rightarrow q)$:

- $(\mathbf{p} \rightarrow \mathbf{q})$ If n is odd then n² is odd
- we use a direct proof
- Suppose n is odd. Then n = 2k + 1, where k is an integer.
- $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$
- Therefore, n^2 is odd.

CS 441 Discrete mathematics for CS

M. Hauskrecht

