

<section-header> Formal proofs Proof Provides an argument supporting the validity of the statement Proof of the theorem: above that the conclusion follows from premises By any asymptotic premises Beremises Beremises Descubes of other theorems Status of other theorems

Rules of inference		
Modus Tollens (modus ponens for the contrapositive)		
$[\neg q \land (p \to q)] \to \neg p$	$\neg \mathbf{q}$	
	$p \rightarrow q$	
	∴ ¬p	
Hypothetical Syllogism		
$[(\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{r})] \rightarrow (\mathbf{p} \rightarrow \mathbf{r})$	$\mathbf{p} \rightarrow \mathbf{q}$	
	$q \rightarrow r$	
	$\therefore p \rightarrow r$	
Disjunctive Syllogism		
$[(\mathbf{p} \lor \mathbf{q}) \land \neg \mathbf{p}] \to \mathbf{q}$	$\mathbf{p} \lor \mathbf{q}$	
	p	
	∴ q	
CS 441 Discrete mathematics for C	S	M. Hauskrecht

Indirect proof			
• To show $p \rightarrow q$ prove its contrapositive $\neg q \rightarrow \neg p$			
• Why? $\mathbf{p} \rightarrow \mathbf{q}$ and $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$ are equivalent !!!			
• Assume $\neg q$ is true, show that $\neg p$ is true.			
Example: Prove If $3n + 2$ is odd then n is odd.			
• Assume n is even, that is $n = 2k$, where k is an integer.			
• Then: $3n + 2 = 3(2k) + 2$			
= 6k + 2			
= 2(3k+1)			
• Therefore $3n + 2$ is even.			
• We proved \neg "n is odd" \rightarrow \neg "3n + 2 is odd". This is equivalent to "3n + 2 is odd" \rightarrow "n is odd".			
CS 441 Discrete mathematics for CS	M. Hauskrecht		