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Announcements

• Homework assignment 1 due today
• Homework assignment 2:

– posted on the course web page
– Due on Thursday January 23, 2013

• Recitations today and tomorrow:
– Practice problems related to assignment 2
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Propositional logic: limitations

Propositional logic: the world is described in terms of 
elementary propositions and their logical combinations 

Elementary statements/propositions:
• Typically refer to objects, their properties and relations.  

But these are not explicitly represented in the propositional 
logic
– Example:

• “John is a UPitt student.”

• Objects and properties are hidden in the statement, it is 
not possible to reason about them

John a Upitt student

object a property
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Propositional logic: limitations

(1) Statements that hold for many objects must be enumerated

• Example:

– John is a CS UPitt graduate  John has passed cs441

– Ann is a CS Upitt graduate  Ann has passed cs441

– Ken is a CS Upitt graduate  Ken has passed cs441

– …

• Solution: make statements with variables

– x is a CS UPitt graduate  x has passed cs441
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Propositional logic: limitations

(2) Statements that define the property of the group of objects

• Example:

– All new cars must be registered. 

– Some of the CS graduates graduate with honor. 

• Solution: make statements with quantifiers  

– Universal quantifier –the property is satisfied by all 
members of the group

– Existential quantifier – at least one member of the group 
satisfy the property
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Predicate logic

Remedies the limitations of the propositional logic
• Explicitly models objects and their properties
• Allows to make statements with variables and quantify them
Predicate logic: 
• Constant –models a specific object

Examples: “John”, “France”, “7” 
• Variable – represents object of specific type (defined by the 

universe of discourse)
Examples: x, y 

(universe of discourse can be people, students, numbers)
• Predicate - over one, two or many variables or constants. 

– Represents properties or relations among objects
Examples: Red(car23), student(x), married(John,Ann)
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Predicates

Predicates represent properties or relations among objects

• A predicate P(x) assigns a value true or false to each x 
depending on whether the property holds or not for x.

• The assignment is best viewed as a big table with the variable x 
substituted for objects from the universe of discourse

Example:

• Assume Student(x) where the universe of discourse are people

• Student(John) …. T   (if John is a student)

• Student(Ann)  …. T  (if Ann is a student)

• Student(Jane) ….. F  (if Jane is not a student)

• …
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Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

Truth values for different x:

• P(2)   T

• P(3)   T

• P(4) F

• P(5) T

• P(6) F

All statements P(2), P(3), P(4), P(5), P(6) are propositions

…

But P(x) with variable x is not a proposition
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Quantified statements

Predicate logic lets us to make statements about groups of 
objects

• To do this we use special quantified expressions

Two types of quantified statements:

• universal

Example: ‘ all CS Upitt graduates have to pass cs441” 

– the statement is true for all graduates

• existential

Example: ‘Some CS Upitt students graduate with honor.’

– the statement is true for some people
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Universal quantifier

Quantification converts a propositional function into a 
proposition by binding a variable to a set of values from the 
universe of discourse. 

Example: 

• Let P(x) denote x > x - 1. Assume x are real numbers. 

• Is P(x) a proposition?  No. Many possible substitutions.

• Is x P(x) a proposition?  Yes.

• What is the truth value for x P(x) ?

– True, since P(x) holds for all x. 
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Existential quantifier

Quantification converts a propositional function into a 
proposition by binding a variable to a set of values from the 
universe of discourse. 

Example:

• Let T(x) denote x > 5 and x is from Real numbers.  

• Is T(x) a proposition? No. 

• Is x T(x) a proposition?  Yes. 

• What is the truth value for x T(x) ?

– Since 10 > 5 is true. Therefore, x T(x)  is true.

M. HauskrechtCS 441 Discrete mathematics for CS

Summary of quantified statements

• When x P(x) and x P(x) are true and false?

Suppose the elements in the universe of discourse can be 
enumerated as x1,  x2, ...,  xN then:

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true.  

Statement When true? When false?

x P(x) P(x) true for all x There is an x 
where P(x) is false.

x P(x) There is some x for 
which P(x) is true.

P(x) is false for all 
x.
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Translation with quantifiers

Sentence:

• All Upitt students are smart. 

• Assume: the domain of discourse of x are Upitt students

• Translation:

• x Smart(x) 

• Assume: the universe of discourse are students (all students):

• x at(x,Upitt)  Smart(x)

• Assume: the universe of discourse are people:

• x student(x)  at(x,Upitt)  Smart(x)
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Translation with quantifiers

Sentence: 

• Someone at CMU is smart.

• Assume: the domain of discourse are all CMU affiliates

• Translation:

•  x Smart(x) 

• Assume: the universe of discourse are people:

•  x at(x,CMU)  Smart(x)
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Translation with quantifiers

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications
• All S(x) is P(x)

– x ( S(x)  P(x) )
• No S(x) is P(x)

– x( S(x)  ¬P(x) )

Existential statements typically tie with conjunctions
• Some S(x) is P(x)

– x (S(x)  P(x) )
• Some S(x) is not P(x) 

– x (S(x)  ¬P(x) )
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Nested quantifiers 

• More than one quantifier may be necessary to capture the 
meaning of a statement in the predicate logic.

Example:

• Every real number has its corresponding negative. 

• Translation:

– Assume:

• a real number is denoted as x and its negative as y

• A predicate P(x,y) denotes: “x + y =0”

• Then we can write:

x  y P(x,y)
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Nested quantifiers 

• More than one quantifier may be necessary to capture the 
meaning of a statement in the predicate logic.

Example:

• There is a person who loves everybody.  

• Translation:

– Assume:

• Variables x and y denote people  

• A predicate L(x,y) denotes: “x loves y”

• Then we can write in the predicate logic:

 x y L(x,y)
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Order of quantifiers 

The order of nested quantifiers matters if quantifiers are of 
different type

• xy L(x,y)   is not the same as yx L(x,y) 

Example:
• Assume L(x,y) denotes “x loves y”

• Then:    xy L(x,y)
• Translates to:  Everybody loves somebody.
• And: y x L(x,y)
• Translates to: There is someone who is loved by everyone.

The meaning of the two is different.  
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Order of quantifiers 

The order of nested quantifiers does not matter if quantifiers 
are of the same type

Example:
• For all x and y, if x is a parent of y then y is a child of x
• Assume:

– Parent(x,y) denotes “x is a parent of y”
– Child(x,y) denotes “x is a child of y”

• Two equivalent ways to represent the statement: 

– x y Parent(x,y)  Child(y,x)

– y x Parent(x,y)  Child(y,x)

M. Hauskrecht

Translation exercise 

Suppose:

– Variables x,y denote people

– L(x,y) denotes “x loves y”.

Translate:

• Everybody loves Raymond. x L(x,Raymond)

• Everybody loves somebody. xy L(x,y)

• There is somebody whom everybody loves.   yx L(x,y)

• There is somebody who Raymond doesn't love.
y¬L(Raymond,y)

• There is somebody whom no one loves.

y x ¬L(x,y)


