

M. Hauskrecht

	Predicates	
Assume a pre	edicate P(x) that represents the sta	tement:
• x is a prin	ne number	
Truth values f	or different x:	
• P(2)	Т	
• P(3)	Т	
• P(4)	F	
• P(5)	Т	
• P(6)	F	
All statement	s P(2), P(3), P(4), P(5), P(6) are pr	opositions
•••		
But P(x) with	variable x is not a proposition	
	CS 441 Discrete mathematics for CS	M. Hauskrecht

Summary of quar	ntified statements
-----------------	--------------------

• When $\forall \mathbf{x} \mathbf{P}(\mathbf{x})$ and $\exists \mathbf{x} \mathbf{P}(\mathbf{x})$ are true and false?

Statement	When true?	When false?
∀x P(x)	P(x) true for all x	There is an x where P(x) is false.
∃x P(x)	There is some x for which P(x) is true.	P(x) is false for all x.

Suppose the elements in the universe of discourse can be enumerated as x1, x2, ..., xN then:

- $\forall x \ P(x)$ is true whenever $P(x1) \land P(x2) \land ... \land P(xN)$ is true
- $\exists x P(x)$ is true whenever $P(x1) \lor P(x2) \lor ... \lor P(xN)$ is true.

Translation with quantifiers

Sentence:

- Someone at CMU is smart.
- Assume: the domain of discourse are all CMU affiliates
- Translation:
- $\exists x \text{ Smart}(x)$
- Assume: the universe of discourse are people:
- $\exists x at(x, CMU) \land Smart(x)$

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

 $\exists x \forall y L(x,y)$

M. Hauskrecht

Suppose:	
 Variables x,y denote people 	
- L(x,y) denotes "x loves y".	
Translate:	
• Everybody loves Raymond.	$\forall x L(x, Raymond)$
• Everybody loves somebody.	$\forall x \exists y L(x,y)$
• There is somebody whom everybo	ody loves. $\exists y \forall x L(x,y)$
• There is somebody who Raymond ∃y¬L(Raymond,y)	l doesn't love.
• There is somebody whom no one	loves.
$\exists v \forall x \neg L(x,v)$	