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Propositional logic: review

• Propositional logic: a formal language for making logical 
inferences

• A proposition is a statement that is either true or false.

• A compound proposition can be created from other 
propositions using logical connectives 

• The truth of a compound proposition is defined by truth 
values of elementary propositions and the meaning of 
connectives.

• The truth table for a compound proposition: table with 
entries (rows) for all possible combinations of truth values of 
elementary propositions.
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Tautology and Contradiction 

What is a tautology?  

• A compound proposition that is always true for all possible 
truth values of the propositions is called a tautology.  

•
Example: p  ¬p is a tautology.

p ¬p p  ¬p

T
F

F
T

T
T
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Tautology and Contradiction 

What is a contradiction? 

• A compound proposition that is always false is called a 
contradiction. 

Example:   p  ¬p is a contradiction.

p ¬p p  ¬p

T
F

F
T

F
F
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Equivalence 

• How do we determine that two propositions are equivalent? 
Their truth values in the truth table are the same. 

• Example: p  q  is  equivalent to  ¬q  ¬p  (contrapositive)

• Equivalent statements are important for logical reasoning 
since they can be substituted and can help us to make a logical 
argument. 

p q p  q ¬q  ¬p

T T T T

T F F F

F T T T

F F T T
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Logical equivalence 

• Definition: The propositions p and q are called logically 
equivalent if p  q is a tautology (alternately, if they have the 
same truth table). The notation p <=> q denotes p and q are 
logically equivalent.

a b a  b ¬a  ¬b
(a  b) <->
(¬a  ¬b)

T T T T T

T F F F T

F T T T T

F F T T T
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Important logical equivalences 

• Identity

– p  T  <=>  p

– p  F  <=>  p

• Domination

– p  T  <=>  T

– p  F  <=>  F

• Idempotent

– p  p  <=> p

– p  p  <=> p
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Important logical equivalences 

• Double negation

– ¬(¬p)  <=> p

• Commutative

– p  q  <=>  q  p

– p  q  <=>  q  p 

• Associative

– (p  q)  r  <=>  p  (q  r)

– (p  q)  r  <=>  p  (q  r) 
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Important logical equivalences 

• Distributive

– p  (q  r)  <=>  (p  q)  (p  r)

– p  (q  r)  <=>  (p  q)  (p  r) 

• De Morgan

– ¬( p  q )  <=> ¬p  ¬q

– ( p  q )  <=> ¬p  ¬q 

• Other useful equivalences

– p  ¬p <=> T

– p  ¬p <=> F

– p  q  <=> (¬p  q)
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Showing logical equivalence

Example: Show (p  q)  p is a tautology 

In other words  ((p  q)  p <=> T) 

Proof via truth table: 

p q p  q (p  q)p

T T T T

T F F T

F T F T

F F F T
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Showing logical equivalences

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

Example: Show that (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p  <=>  T)

(p  q)  p  <=>  ¬(p  q)  p Useful

<=>  [¬p  ¬q]  p DeMorgan

<=>  [¬q  ¬p]  p         Commutative

<=>  ¬q  [ ¬p  p ]        Associative

<=>  ¬q  [ T ] Useful

<=>   T Domination
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Propositional logic

• Definition:
– A proposition is a statement that is either true or false.

• Examples:
– Pitt is located in the Oakland section of Pittsburgh.
– 5 + 2 = 8.
– It is raining today
– 2 is a prime number
– If (you do not drive over 65 mph) then (you will not get a 

speeding ticket).

• Not a proposition: 

– How are you?

– x + 5 = 3
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Limitations of the propositional logic

Propositional logic: the world is described in terms of 
elementary propositions and their logical combinations 

Elementary statements:
• Typically refer to objects, their properties and relations.  

But these are not explicitly represented in the propositional 
logic
– Example:

• “John is a UPitt student.”

• Objects and properties are hidden in the statement, it is 
not possible to reason about them

John a Upitt student

object a property
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Limitations of the propositional logic

(1) Statements that must be repeated for many objects

– In propositional logic these must be exhaustively enumerated

• Example:

– If John is a CS UPitt graduate then John has passed cs441

Translation:

– John is a CS UPitt graduate  John has passed cs441

Similar statements can be written for other Upitt graduates:

– Ann is a CS Upitt graduate  Ann has passed cs441

– Ken is a CS Upitt graduate  Ken has passed cs441

– …

• What is a more natural solution to express the above 
knowledge?
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Limitations of the propositional logic

(1) Statements that must be repeated for many objects

• Example:

– If John is a CS UPitt graduate then John has passed cs441

Translation:

– John is a CS UPitt graduate  John has passed cs441

Similar statements can be written for other Upitt graduates:

– Ann is a CS Upitt graduate  Ann has passed cs441

– Ken is a CS Upitt graduate  Ken has passed cs441

– …

• Solution: make statements with variables

– If x is a CS Upitt graduate then x has passed cs441

– x is a CS UPitt graduate  x has passed cs441
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Limitations of the propositional logic

(2) Statements that define the property of the group of objects

• Example:

– All new cars must be registered. 

– Some of the CS graduates graduate with honors. 

• Solution: make statements with quantifiers  

– Universal quantifier –the property is satisfied by all 
members of the group

– Existential quantifier – at least one member of the group 
satisfy the property
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Predicate logic

Remedies the limitations of the propositional logic
• Explicitly models objects and their properties
• Allows to make statements with variables and quantify them
Basic building blocks of the predicate logic: 
• Constant –models a specific object

Examples: “John”, “France”, “7” 
• Variable – represents object of specific type (defined by the 

universe of discourse)
Examples: x, y 

(universe of discourse can be people, students, numbers)
• Predicate - over one, two or many variables or constants. 

– Represents properties or relations among objects
Examples: Red(car23), student(x), married(John,Ann)

M. HauskrechtCS 441 Discrete mathematics for CS

Predicates

Predicates represent properties or relations among objects

A predicate P(x) assigns a value true or false to each x depending 
on whether the property holds or not for x.

• The assignment is best viewed as a big table with the variable x 
substituted for objects from the universe of discourse

Example:

• Assume Student(x) where the universe of discourse are people

• Student(John) …. T   (if John is a student)

• Student(Ann)  …. T  (if Ann is a student)

• Student(Jane) ….. F  (if Jane is not a student)

• …
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Predicates

Assume a predicate P(x) that represents the statement:

• x is a prime number

What are the truth values of:

• P(2)   T

• P(3)   T

• P(4) F

• P(5) T

• P(6) F

• P(7) T

All statements P(2), P(3), P(4), P(5), P(6), P(7) are propositions
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Predicates

Assume a predicate P(x) that represents the statement:
• x is a prime number

What are the truth values of:
• P(2)   T
• P(3)   T
• P(4) F
• P(5) T
• P(6) F
• P(7) T

Is P(x) a proposition? No. Many possible substitutions are 
possible. 
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Predicates

• Predicates can have more arguments which represent the 
relations between objects

Example:

• Older(John, Peter)    denotes ‘John is older than Peter’

– this is a proposition because it is either true or false

• Older(x,y)    - ‘x is older than y’

– not a proposition, but after the substitution it becomes one
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Predicates

• Predicates can have more arguments which represent the 
relations between objects

Example:

• Let Q(x,y) denote ‘x+5 >y’

– Is Q(x,y) a proposition? 
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Predicates

• Predicates can have more arguments which represent the 
relations between objects

Example:

• Let Q(x,y) denote ‘x+5 >y’

– Is Q(x,y) a proposition?   No!

– Is Q(3,7) a proposition?  Yes. It is true. 

– What is the truth value of: 

– Q(3,7)   T

– Q(1,6)    F

– Q(2,2)    T

– Is Q(3,y) a proposition? No! We cannot say if it is true or 
false.
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Compound statements in predicate logic

Compound statements are obtained via logical connectives

Examples:

Student(Ann)  Student(Jane)    

• Translation: “Both Ann and Jane are students”

• Proposition: yes.  

Country(Sienna)  River(Sienna)   

• Translation: “Sienna is a country or a river” 

• Proposition: yes. 

CS-major(x)  Student(x)   

• Translation: “if x is a CS-major then x is a student”

• Proposition: no. 
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Predicates

Important:

• statement P(x) is not a proposition since there are more objects 
it can be applied to

This is the same as in propositional logic …

… But the difference is:

• predicate logic allows us to explicitly manipulate and substitute 
for the objects

• Predicate logic permits quantified sentences where variables are 
substituted for statements about the group of objects
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Quantified statements

Predicate logic lets us to make statements about groups of 
objects

• To do this we use special quantified expressions

Two types of quantified statements:

• universal

Example: ‘ all CS Upitt graduates have to pass cs441” 

– the statement is true for all graduates

• existential

Example: ‘Some CS Upitt students graduate with honor.’

– the statement is true for some people
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Universal quantifier

Defn: The universal quantification of P(x) is the proposition:

"P(x) is true for all values of x in the domain of discourse."  The 
notation x P(x) denotes the universal quantification of P(x), 
and is expressed as for every x, P(x).

Example:

• Let P(x) denote x > x - 1.

• What is the truth value of x P(x)?

• Assume the universe of discourse of x is all real numbers.

• Answer: Since every number x is greater than itself minus 1. 
Therefore,  x P(x) is true.
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Universal quantifier

Quantification converts a propositional function into a 
proposition by binding a variable to a set of values from the 
universe of discourse. 

Example: 

• Let P(x) denote x > x - 1.

• Is P(x) a proposition?  No. Many possible substitutions.

• Is x P(x) a proposition?  Yes. True if for all x from the 
universe of discourse P(x) is true. 
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Universally quantified statements

Predicate logic lets us make statements about groups of objects

Universally quantified statement

• CS-major(x)  Student(x)   

– Translation: “if x is a CS-major then x is a student”

– Proposition: no.

• x CS-major(x)  Student(x)

– Translation: “(For all people it holds that) if a person is a 
CS-major then she is a student.”

– Proposition: yes.
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Existential quantifier

Definition: The existential quantification of P(x) is the 
proposition "There exists an element in the domain (universe) of 
discourse such that P(x) is true."  The notation x P(x) denotes 
the existential quantification of P(x), and is expressed as there is 
an x such that P(x) is true. 

Example 1:

• Let T(x) denote x > 5 and x is from Real numbers.  

• What is the truth value of x T(x)?  

• Answer:

• Since 10 > 5 is true. Therefore, it is true that x T(x).
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Existential quantifier

Definition: The existential quantification of P(x) is the 
proposition "There exists an element in the domain (universe) of 
discourse such that P(x) is true."  The notation x P(x) denotes 
the existential quantification of P(x), and is expressed as there is 
an x such that P(x) is true.

Example 2:

• Let Q(x) denote x = x + 2 where x is real numbers 

• What is the truth value of x Q(x)?  

• Answer: Since no real number is 2 larger than itself, 

the truth value of x Q(x) is false. 
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Existentially quantified statements

Statements about groups of objects

Example: 

• CS-Upitt-graduate (x)  Honor-student(x)   

– Translation: “x is a CS-Upitt-graduate and x is an honor 
student”

– Proposition: ?
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Quantified statements

Statements about groups of objects

Example:

• CS-Upitt-graduate (x)  Honor-student(x)   

– Translation: “x is a CS-Upitt-graduate and x is an honor 
student”

– Proposition: no.

•  x CS-Upitt-graduate (x)  Honor-student(x) 

– Translation: “There is a person who is a CS-Upitt-graduate 
and who is also an honor student.”

– Proposition: ?
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Quantified statements

Statements about groups of objects

Example:

• CS-Upitt-graduate (x)  Honor-student(x)   

– Translation: “x is a CS-Upitt-graduate and x is an honor 
student”

– Proposition: no.

•  x CS-Upitt-graduate (x)  Honor-student(x) 

– Translation: “There is a person who is a CS-Upitt-graduate 
and who is also an honor student.”

– Proposition: yes.
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Summary of quantified statements

• When x P(x) and x P(x) are true and false?

Suppose the elements in the universe of discourse can be 
enumerated as x1,  x2, ...,  xN then:

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true

• x P(x) is true whenever P(x1)  P(x2)  ...  P(xN) is true.  

Statement When true? When false?

x P(x) P(x) true for all x There is an x 
where P(x) is false.

x P(x) There is some x for 
which P(x) is true.

P(x) is false for all 
x.


