CS 441 Discrete Mathematics for CS

 Lecture 23

 Lecture 23}

Relations III.

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in S$. We denote the composite of R and S by S o R.

Example: A
A B C
a

R
S

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $\mathrm{a} \in \mathrm{A}$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in \mathrm{S}$. We denote the composite of R and S by So o .

Example: A

$$
(\mathrm{a}, \mathrm{c}) \in \mathrm{S} \text { o } \mathrm{R}
$$

a

R
S

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in \mathrm{S}$. We denote the composite of R and S by S o R .

Examples:

- Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{0,1,2\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$.
- $\mathrm{R}=\{(1,0),(1,2),(3,1),(3,2)\}$
- $\mathrm{S}=\{(0, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{~b})\}$
- So $\mathrm{R}=$?

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $\mathrm{a} \in \mathrm{A}$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in \mathrm{S}$. We denote the composite of R and S by $\mathbf{S o l}$.

Example:

- Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{0,1,2\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$.
- $\mathrm{R}=\{(1,0),(1,2),(3,1),(3,2)\}$
- $S=\{(0, b),(1, a),(2, b)\}$
- $\operatorname{Sor}=\{(1, b),(3, a),(3, b)\}$

Representing binary relations with graphs

- We can graphically represent a binary relation R from A to B as follows:
- if $\mathbf{a} \mathbf{R} \mathbf{b}$ then draw an arrow from a to b.

$$
\mathbf{a} \rightarrow \mathbf{b}
$$

Example:

- Relation $\mathrm{R}_{\text {div }}$ (from previous lectures) on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Representing relations on a set with digraphs

Definition: A directed graph or digraph consists of a set of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b) and vertex b is the terminal vertex of this edge. An edge of the form (a, a) is called a loop.

Example

- Relation $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Powers of R

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.

Powers of \mathbf{R}

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\text { - } \mathbf{R}^{\mathbf{1}}=\mathbf{R} \quad \text { and } \quad \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R} .
$$

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- What does R^{2} represent?

Powers of R

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathrm{n}} \mathbf{o} \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- What does R^{2} represent?

- Paths of length 2

Powers of \mathbf{R}

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\cdot \mathbf{R}^{1}=\mathbf{R} \quad \text { and } \quad \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R}
$$

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- What does R^{2} represent?

- Paths of length 2
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$

Powers of \mathbf{R}

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\text { - } \mathbf{R}^{1}=\mathbf{R} \quad \text { and } \quad \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R} .
$$

Examples

- $R=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$

- What does R^{2} represent?
- Paths of length 2
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$ path of length 3

Powers of \mathbf{R}

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\cdot \mathbf{R}^{1}=\mathbf{R} \quad \text { and } \quad \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R}
$$

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$

- $\mathrm{R}^{4}=\{(1,3),(2,3),(3,3)\}$

Powers of R

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\text { - } \mathbf{R}^{1}=\mathbf{R} \text { and } \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \mathbf{o} \mathbf{R} .
$$

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$

- $\mathrm{R}^{4}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{\mathrm{k}}=\{(1,3),(2,3),(3,3)\} \quad \mathrm{k}>3$

Transitive relation and $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$ for $\mathrm{n}=1,2,3, \ldots$.

Proof: bi-conditional (if and only if)
Proved last lecture

Closures of relations

- Let $\mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\}$ on $\mathrm{A}=\{123\}$.
- Is this relation reflexive?
- Answer: ?

Closures of relations

- Let $\mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\}$ on $\mathrm{A}=\{123\}$.
- Is this relation reflexive?
- Answer: No. Why?

Closures of relations

- Let $\mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\}$ on $\mathrm{A}=\{123\}$.
- Is this relation reflexive?
- Answer: No. Why?
- $(2,2)$ and $(3,3)$ is not in R.
- The question is what is the minimal relation $\mathbf{S} \supseteq \mathbf{R}$ that is reflexive?
- How to make R reflexive with minimum number of additions?
- Answer: ?

Closures of relations

- Let $\mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\}$ on $\mathrm{A}=\{123\}$.
- Is this relation reflexive?
- Answer: No. Why?
- $(2,2)$ and $(3,3)$ is not in R.
- The question is what is the minimal relation $S \supseteq R$ that is reflexive?
- How to make R reflexive with minimum number of additions?
- Answer: Add $(2,2)$ and $(3,3)$
- Then $S=\{(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)\}$
- $\mathrm{R} \subseteq \mathrm{S}$
- The minimal set $\mathrm{S} \supseteq \mathrm{R}$ is called the reflexive closure of \mathbf{R}

Reflexive closure

The set S is called the reflexive closure of \mathbf{R} if it:

- contains R
- has reflexive property
- is contained in every reflexive relation Q that contains R (R $\subseteq \mathrm{Q}$), that is $\mathrm{S} \subseteq \mathrm{Q}$

Closures on relations

- Relations can have different properties:
- reflexive,
- symmetric
- transitive
- Because of that we define:
- symmetric,
- reflexive and
- transitive
closures.

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Closures

Definition: Let R be a relation on a set A . A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Example (symmetric closure):

- Assume $\mathrm{R}=\{(1,2),(1,3),(2,2)\}$ on $\mathrm{A}=\{1,2,3\}$.
- What is the symmetric closure S of R ?
- $\mathrm{S}=$?

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Example (a symmetric closure):

- Assume $\mathrm{R}=\{(1,2),(1,3),(2,2)\}$ on $\mathrm{A}=\{1,2,3\}$.
- What is the symmetric closure S of R ?
- $S=\{(1,2),(1,3),(2,2)\} \cup\{(2,1),(3,1)\}$ $=\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

Closures

Definition: Let R be a relation on a set A . A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Example (transitive closure):

- Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
- Is R transitive?

Closures

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Example (transitive closure):

- Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $\mathrm{S}=$?

Closures

Definition: Let R be a relation on a set A . A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathrm{Q}(\mathrm{S} \subseteq \mathrm{Q})$ with property P that contains $R(R \subseteq Q)$.

Example (transitive closure):

- Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- $S=\{(1,2),(2,2),(2,3)\} \cup\{(1,3)\}$ $=\{(1,2),(2,2),(2,3),(1,3)\}$
- S is the transitive closure of R

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
Transitive closure $S=\{(1,2),(2,2),(2,3),(1,3)\}$.
R

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
Transitive closure $\mathrm{S}=\{(1,2),(2,2),(2,3),(1,3)\}$.
R

Transitive closure

We can represent the relation on the graph. Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path (or digraph).

Example:

Assume $\mathrm{R}=\{(1,2),(2,2),(2,3)\}$ on $\mathrm{A}=\{1,2,3\}$.
Transitive closure $\mathrm{S}=\{(1,2),(2,2),(2,3),(1,3)\}$.

S

Path length

Theorem: Let R be a relation on a set A . There is a path of length n from a to b if and only if $(a, b) \in R^{n}$.

Proof (math induction):

Path of length 1

Path of length $\mathbf{n + 1}$

Path length

Theorem: Let R be a relation on a set A . There is a path of length n from a to b if and only if $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\mathrm{n}}$.
Proof (math induction):

- $\mathbf{P}(\mathbf{1})$: There is a path of length 1 from a to b if and only if $(a, b) \in$ R^{1}, by the definition of R .

Path length

Theorem: Let R be a relation on a set A . There is a path of length n from a to b if and only if $(a, b) \in R^{n}$.

Proof (math induction):

- $\mathbf{P}(\mathbf{1})$: There is a path of length 1 from a to b if and only if $(a, b) \in$ R^{1}, by the definition of R .
- Show $\mathbf{P}(\mathbf{n}) \rightarrow \mathbf{P}(\mathbf{n}+\mathbf{1})$: Assume there is a path of length n from a to b if and only if $(a, b) \in R^{n} \rightarrow$ there is a path of length $n+1$ from a to b if and only if $(a, b) \in R^{n+1}$.

Path length

Theorem: Let R be a relation on a set A . There is a path of length n from a to b if and only if $(a, b) \in R^{n}$.
Proof (math induction):

- $\mathbf{P}(\mathbf{1})$: There is a path of length 1 from a to b if and only if $(a, b) \in$ R^{1}, by the definition of R .
- Show $\mathbf{P}(\mathbf{n}) \rightarrow \mathbf{P (n + 1) : ~ A s s u m e ~ t h e r e ~ i s ~ a ~ p a t h ~ o f ~ l e n g t h ~} n$ from a to b if and only if $(a, b) \in R^{n} \rightarrow$ there is a path of length $n+1$ from a to b if and only if $(a, b) \in R^{n+1}$.
- There is a path of length $n+1$ from a to b if and only if there exists an $x \in A$, such that $(a, x) \in R$ (a path of length 1$)$ and (x, b) $\in \mathrm{R}^{\mathrm{n}}$ is a path of length n from x to b .

- $(x, b) \in \mathrm{R}^{\mathrm{n}}$ holds due to $\mathrm{P}(\mathrm{n})$. Therefore, there is a path of length $n+1$ from a to b. This also implies that $(a, b) \in R^{n+1}$.

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a, b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R .

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $\mathrm{A}=\{1,2,3,4\}$

- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a, b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $A=\{1,2,3,4\}$

- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$
- $\mathrm{R}^{2}=$?
-

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a, b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $\mathrm{A}=\{1,2,3,4\}$

- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$
- $\mathrm{R}^{2}=\{(1,3),(2,4)\}$
- $\mathrm{R}^{3}=$?
-

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a, b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $\mathrm{A}=\{1,2,3,4\}$

- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$
- $\mathrm{R}^{2}=\{(1,3),(2,4)\}$
- $\mathrm{R}^{3}=\{(1,4)\}$
- $\mathrm{R}^{4}=$?

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $A=\{1,2,3,4\}$
- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$

- $\mathrm{R}^{2}=\{(1,3),(2,4)\}$
- $\mathrm{R}^{3}=\{(1,4)\}$
- $\mathrm{R}^{4}=\varnothing$
- ...
- $\mathrm{R}^{*}=$?

Connectivity relation

Definition: Let R be a relation on a set A . The connectivity relation R^{*} consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}
$$

Example:

- $A=\{1,2,3,4\}$
- $\mathrm{R}=\{(1,2),(1,4),(2,3),(3,4)\}$

- $\mathrm{R}^{2}=\{(1,3),(2,4)\}$
- $\mathrm{R}^{3}=\{(1,4)\}$
- $\mathrm{R}^{4}=\varnothing$
- ...
- $\mathrm{R}^{*}=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A . If there is a path from a to b, then there exists a path of length $<$ n in between (a,b). Consequently:
Proof (intuition): $R^{*}=\bigcup_{k=1}^{n} R^{k}$

- There are at most n different elements we can visit on a path if the path does not have loops

- Loops may increase the length but the same node is visited more than once

Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A . If there is a path from a to b, then there exists a path of length $<$ n in between (a, b). Consequently:
Proof (intuition): $R^{*}=\bigcup_{k=1}^{n} R^{k}$

- There are at most n different elements we can visit on a path if the path does not have loops

- Loops may increase the length but the same node is visited more than once

Transitivity closure and connectivity relation

Theorem: The transitive closure of a relation R equals the connectivity relation R^{*}.

Based on the Lemma 1.

Lemma 1: Let A be a set with n elements, and R a relation on A . If there is a path from a to b, then there exists a path of length $<\mathrm{n}$ in between (a, b). Consequently:

$$
R^{*}=\bigcup_{k=1}^{n} R^{k}
$$

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $R=\{(a, b) \mid a, b \in A, a \equiv b \bmod 3\} \quad(a$ is congruent to b modulo 3$)$

Congruencies:

- $0 \bmod 3=$?

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \equiv \mathrm{b} \bmod 3\} \quad(\mathrm{a}$ is congruent to b modulo 3)

Congruencies:

- $0 \bmod 3=0 \quad 1 \bmod 3=$?

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $R=\{(a, b) \mid a, b \in A, a \equiv b \bmod 3\} \quad(a$ is congruent to b modulo 3$)$

Congruencies:

- $0 \bmod 3=0 \quad 1 \bmod 3=1 \quad 2 \bmod 3=2 \quad 3 \bmod 3=$?

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \equiv \mathrm{b} \bmod 3\} \quad(\mathrm{a}$ is congruent to b modulo 3)

Congruencies:

- $0 \bmod 3=0 \quad 1 \bmod 3=1 \quad 2 \bmod 3=2 \quad 3 \bmod 3=0$
- $4 \bmod 3=$?

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \equiv \mathrm{b} \bmod 3\} \quad(\mathrm{a}$ is congruent to b modulo 3)

Congruencies:

- $0 \bmod 3=0 \quad 1 \bmod 3=1 \quad 2 \bmod 3=2 \quad 3 \bmod 3=0$
- $4 \bmod 3=1 \quad 5 \bmod 3=2 \quad 6 \bmod 3=0$

Relation R has the following pairs:
?

Equivalence relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $\mathrm{A}=\{0,1,2,3,4,5,6\}$ and

- $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \equiv \mathrm{b} \bmod 3\} \quad(\mathrm{a}$ is congruent to b modulo 3)

Congruencies:

- $0 \bmod 3=0 \quad 1 \bmod 3=1 \quad 2 \bmod 3=2 \quad 3 \bmod 3=0$
- $4 \bmod 3=1 \quad 5 \bmod 3=2 \quad 6 \bmod 3=0$

Relation \mathbf{R} has the following pairs:

- $(0,0)$
$(0,3),(3,0),(0,6),(6,0)$
- $(3,3),(3,6)(6,3),(6,6)$
$(1,1),(1,4),(4,1),(4,4)$
- $\quad(2,2),(2,5),(5,2),(5,5)$

Equivalence relation

- Relation R on $\mathrm{A}=\{0,1,2,3,4,5,6\}$ has the following pairs:
$(0,0)$
$(0,3),(3,0),(0,6),(6,0)$
$(3,3),(3,6)(6,3),(6,6)$
$(1,1),(1,4),(4,1),(4,4)$
$(2,2),(2,5),(5,2),(5,5)$
- Is R reflexive?

Equivalence relation

- Relation R on $\mathrm{A}=\{\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6 \}}$ has the following pairs:
$(0,3),(3,0),(0,6),(6,0)$
$(3,3),(3,6)(6,3),(6,6)$
$(1,1),(1,4),(4,1),(4,4)$
$(2,2),(2,5),(5,2),(5,5)$
- Is R reflexive? Yes.
- Is R symmetric?

Equivalence relation

- Relation R on $\mathrm{A}=\{0,1,2,3,4,5,6\}$ has the following pairs:

$$
(0,0)
$$

$(0,3),(3,0),(0,6),(6,0)$
$(3,3),(3,6)(6,3),(6,6)$
$(1,1),(1,4),(4,1),(4,4)$
$(2,2),(2,5),(5,2),(5,5)$

- Is R reflexive? Yes.
- Is R symmetric? Yes.
- Is R transitive?

Equivalence relation

- Relation \mathbf{R} on $\mathrm{A}=\{0,1,2,3,4,5,6\}$ has the following pairs:
$(0,3),(3,0),(0,6),(6,0)$
$(3,3),(3,6)(6,3),(6,6) \quad(1,1),(1,4),(4,1),(4,4)$
$(2,2),(2,5),(5,2),(5,5)$
- Is R reflexive? Yes.
- Is R symmetric? Yes.

- Is R transitive. Yes.

Then

- R is an equivalence relation.

Equivalence class

Theorem: Let R be an equivalence relation on a set A . The
following statements are equivalent:

- i) a R b
- ii) $[\mathrm{a}]=[\mathrm{b}]$
- iii) $[\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing$.

Proof: (iii) \rightarrow (i)

- Suppose $[\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing$, want to show a R b.
- $[\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing \rightarrow \mathrm{x} \in[\mathrm{a}] \cap[\mathrm{b}] \rightarrow \mathrm{x} \in[\mathrm{a}]$ and $\mathrm{x} \in[\mathrm{b}] \rightarrow(\mathrm{a}, \mathrm{x})$ and $(b, x) \in R$.
- Since R is symmetric $(\mathrm{x}, \mathrm{b}) \in \mathrm{R}$. By the transitivity of $\mathrm{R}(\mathrm{a}, \mathrm{x}) \in \mathrm{R}$ and $(x, b) \in R$ implies $(a, b) \in R \rightarrow a R b$.

