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Composite of relations

Definition: Let R be a relation from a set A to a set B and S a 
relation from B to a set C. The composite of R and S is the 
relation consisting of the ordered pairs (a,c) where a  A and c 
 C, and for which there is a b  B such that (a,b)  R and (b,c) 
 S. We denote the composite of R and S by S o R.

Example:

a

A B C

R S

b c
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Composite of relations

Definition: Let R be a relation from a set A to a set B and S a 
relation from B to a set C. The composite of R and S is the 
relation consisting of the ordered pairs (a,c) where a  A and c 
 C, and for which there is a b  B such that (a,b)  R and (b,c) 
 S. We denote the composite of R and S by S o R.

Example:

a

A B C

R S

b c

(a,c)  S o R
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Composite of relations

Definition: Let R be a relation from a set A to a set B and S a 
relation from B to a set C. The composite of R and S is the 
relation consisting of the ordered pairs (a,c) where a  A and c 
 C, and for which there is a b  B such that (a,b)  R and (b,c) 
 S. We denote the composite of R and S by S o R.

Examples:

• Let A = {1,2,3}, B = {0,1,2} and C = {a,b}.

• R = {(1,0), (1,2), (3,1),(3,2)}

• S = {(0,b),(1,a),(2,b)}

• S o R = ?
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Composite of relations

Definition: Let R be a relation from a set A to a set B and S a 
relation from B to a set C. The composite of R and S is the 
relation consisting of the ordered pairs (a,c) where a  A and c 
 C, and for which there is a b  B such that (a,b)  R and (b,c) 
 S. We denote the composite of R and S by S o R.

Example:

• Let A = {1,2,3}, B = {0,1,2} and C = {a,b}.

• R = {(1,0), (1,2), (3,1),(3,2)}

• S = {(0,b),(1,a),(2,b)}

• S o R = {(1,b),(3,a),(3,b)}
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Representing binary relations with graphs

• We can graphically represent a binary relation R from A to B as 
follows:

• if a R b then draw an arrow from a to b.

a  b

Example:

• Relation Rdiv (from previous lectures) on A={1,2,3,4}

• Rdiv = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}

1

2

3

4

1

2

3

4
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Representing relations on a set with digraphs

Definition: A directed graph or digraph consists of a set of 
vertices (or nodes) together with a set E of ordered pairs of 
elements of V called edges (or arcs). The vertex a is called the 
initial vertex of the edge (a,b) and vertex b is the terminal vertex 
of this edge.  An edge of the form (a,a) is called a loop.

Example

• Relation Rdiv ={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}

1

2

3

4

1

2

3

4

1

2

3

4

digraph
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Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

1

2

3

4
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Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• What does R 2 represent?

1

2

3

4

M. HauskrechtCS 441 Discrete mathematics for CS

Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• What does R 2 represent?

• Paths of length 2

1

2

3

4
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Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• What does R 2 represent? 

• Paths of length 2

• R 3 = {(1,3), (2,3), (3,3)}  

1

2

3

4
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Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• What does R 2 represent? 

• Paths of length 2

• R 3 = {(1,3), (2,3), (3,3)}   path of length 3

1

2

3

4
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Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• R 3 = {(1,3), (2,3), (3,3)}

• R 4 = {(1,3), (2,3), (3,3)}

1

2

3

4

M. HauskrechtCS 441 Discrete mathematics for CS

Powers of R

Definition: Let R be a relation on a set A. The powers Rn, n = 
1,2,3,...  is defined inductively by

• R1 = R and     Rn+1 = Rn o R.

Examples

• R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

• R 1 = R = {(1,2),(2,3),(2,4), (3,3)} 

• R 2 = {(1,3), (1,4), (2,3), (3,3)}

• R 3 = {(1,3), (2,3), (3,3)}

• R 4 = {(1,3), (2,3), (3,3)}

• R k = {(1,3), (2,3), (3,3)}     k>3

1

2

3

4
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Transitive relation and Rn

Theorem: The relation R on a set A is transitive if and only if      
Rn  R for n = 1,2,3,... .

Proof: bi-conditional (if and only if)

Proved last lecture
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Closures of relations

• Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}. 

• Is this relation reflexive?

• Answer: ? 
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Closures of relations

• Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}. 

• Is this relation reflexive?

• Answer: No. Why?  
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Closures of relations

• Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}. 

• Is this relation reflexive?

• Answer: No. Why? 

• (2,2) and (3,3) is not in R.

• The question is what is the minimal relation S  R that is 
reflexive?

• How to make R reflexive with minimum number of additions? 

• Answer: ?
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Closures of relations

• Let R={(1,1),(1,2),(2,1),(3,2)} on A ={1 2 3}. 

• Is this relation reflexive?

• Answer: No. Why? 

• (2,2) and (3,3) is not in R.

• The question is what is the minimal relation S  R that is 
reflexive?

• How to make R reflexive with minimum number of additions? 

• Answer: Add (2,2) and (3,3)

• Then S= {(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)}

• R  S

• The minimal set S  R is called the reflexive closure of R
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Reflexive closure

The set S is called the reflexive closure of R if it: 

– contains R

– has reflexive property

– is contained in every reflexive relation Q that contains R  (R 
 Q) , that is   S  Q
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Closures on relations

• Relations can have different properties: 

• reflexive, 

• symmetric

• transitive

• Because of that we define: 

• symmetric, 

• reflexive and 

• transitive

closures.
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 

Example (symmetric closure):

• Assume R={(1,2),(1,3), (2,2)} on A={1,2,3}.

• What is the symmetric closure S of R?

• S=?
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 

Example (a symmetric closure):

• Assume R={(1,2),(1,3), (2,2)} on A={1,2,3}.

• What is the symmetric closure S of R?

• S = {(1,2),(1,3), (2,2)}  {(2,1), (3,1)}

= {(1,2),(1,3), (2,2),(2,1), (3,1)}
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 

Example (transitive closure):

• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

• Is R transitive? 
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 

Example (transitive closure):

• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

• Is R transitive? No. 

• How to make it transitive?

• S = ?
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Closures

Definition: Let R be a relation on a set A. A relation S on A with 
property P is called the closure of R with respect to P if S is a 
subset of every relation Q (S  Q) with property P that contains 
R (R  Q). 

Example (transitive closure):

• Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

• Is R transitive? No. 

• How to make it transitive?

• S = {(1,2), (2,2), (2,3)}   {(1,3)} 

= {(1,2), (2,2), (2,3),(1,3)} 

• S is the transitive closure of R
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Transitive closure

We can represent the relation on the graph. Finding a transitive 
closure corresponds to finding all pairs of elements that are 
connected with a directed path (or digraph). 

Example:

Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

Transitive closure S = {(1,2), (2,2), (2,3),(1,3)}.

1

2

3
R
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Transitive closure

We can represent the relation on the graph. Finding a transitive 
closure corresponds to finding all pairs of elements that are 
connected with a directed path (or digraph). 

Example:

Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

Transitive closure S = {(1,2), (2,2), (2,3),(1,3)}.

1

2

3
R
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Transitive closure

We can represent the relation on the graph. Finding a transitive 
closure corresponds to finding all pairs of elements that are 
connected with a directed path (or digraph). 

Example:

Assume R={(1,2), (2,2), (2,3)} on A={1,2,3}.

Transitive closure S = {(1,2), (2,2), (2,3),(1,3)}.

1

2

3
R S

1

2

3
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Path length

Theorem: Let R be a relation on a set A. There is a path of length 
n from a to b if and only if (a,b)  Rn.

Proof (math induction):

Path of length n

x ba

Path of length 1

Path of length n+1

ba

Path of length 1
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Path length

Theorem: Let R be a relation on a set A. There is a path of length 
n from a to b if and only if (a,b)  Rn.

Proof (math induction):
• P(1): There is a path of length 1 from a to b if and only if (a,b) 

R1, by the definition of R.
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Path length

Theorem: Let R be a relation on a set A. There is a path of length 
n from a to b if and only if (a,b)  Rn.

Proof (math induction):
• P(1): There is a path of length 1 from a to b if and only if (a,b) 

R1, by the definition of R.
• Show P(n)  P(n+1):  Assume there is a path of length n from 

a to b if and only if (a,b)  Rn  there is a path of length n+1 
from a to b if and only if (a,b)  Rn+1.
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Path length

Theorem: Let R be a relation on a set A. There is a path of length 
n from a to b if and only if (a,b)  Rn.

Proof (math induction):
• P(1): There is a path of length 1 from a to b if and only if (a,b) 

R1, by the definition of R.
• Show P(n)  P(n+1):  Assume there is a path of length n from 

a to b if and only if (a,b)  Rn  there is a path of length n+1 
from a to b if and only if (a,b)  Rn+1.

• There is a path of length n+1 from a to b if and only if there 
exists an x  A, such that (a,x)  R (a path of length 1) and (x,b) 
 Rn is a path of length n from x to b.  

• (x,b)  Rn holds due to P(n). Therefore, there is a path of length 
n + 1 from a to b.  This also implies that (a,b)  Rn+1.

Path of length n
x ba
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 

• A = {1,2,3,4}

• R = {(1,2),(1,4),(2,3),(3,4)}







1

*
k

kRR

1

2 3

4
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 

• A = {1,2,3,4}

• R = {(1,2),(1,4),(2,3),(3,4)}

• R2 = ?

•







1

*
k

kRR

1

2 3

4
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 

• A = {1,2,3,4}

• R = {(1,2),(1,4),(2,3),(3,4)}

• R2 = {(1,3),(2,4)}

• R3 = ?

•







1

*
k

kRR

1

2 3

4
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 

• A = {1,2,3,4}

• R = {(1,2),(1,4),(2,3),(3,4)}

• R2 = {(1,3),(2,4)}

• R3 = {(1,4)}

• R4 = ?







1

*
k

kRR

1

2 3

4
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 
• A = {1,2,3,4}
• R = {(1,2),(1,4),(2,3),(3,4)}
• R2 = {(1,3),(2,4)}
• R3 = {(1,4)}
• R4 = 
• ...
• R* = ?         







1

*
k

kRR

1

2 3

4
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Connectivity relation

Definition: Let R be a relation on a set A. The connectivity 
relation R* consists of all pairs (a,b) such that there is a path (of 
any length, ie.  1 or 2 or 3 or ...) between a and b in R.

Example: 
• A = {1,2,3,4}
• R = {(1,2),(1,4),(2,3),(3,4)}
• R2 = {(1,3),(2,4)}
• R3 = {(1,4)}
• R4 = 
• ...
• R* = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}         







1

*
k

kRR

1

2 3

4
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Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A.  
If there is a path from a to b, then there exists a path of length < 
n  in between (a,b). Consequently:

Proof (intuition):

• There are at most n different elements we can visit on a path if 
the path does not have loops

• Loops may increase the length but the same node is visited more 
than once 


n

k

kRR
1

*




x0=a x1 x2 xm=b

x0=a x1 x2 xm=b
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Connectivity

Lemma 1: Let A be a set with n elements, and R a relation on A.  
If there is a path from a to b, then there exists a path of length < 
n  in between (a,b). Consequently:

Proof (intuition):

• There are at most n different elements we can visit on a path if 
the path does not have loops

• Loops may increase the length but the same node is visited more 
than once 


n

k

kRR
1

*




x0=a x1 x2 xm=b

x0=a x1 x2 xm=b



22

M. HauskrechtCS 441 Discrete mathematics for CS

Transitivity closure and connectivity 
relation

Theorem: The transitive closure of a relation R equals the 
connectivity relation R*.

Based on the Lemma 1.

Lemma 1: Let A be a set with n elements, and R a relation on A.  
If there is a path from a to b, then there exists a path of length    
< n  in between (a,b). Consequently:


n

k

kRR
1

*
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = ?       
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = ?
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = 1       2 mod 3 = 2    3 mod 3 = ?
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = 1       2 mod 3 = 2    3 mod 3 = 0

• 4 mod 3 = ?
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = 1       2 mod 3 = 2    3 mod 3 = 0

• 4 mod 3 = 1       5 mod 3 = 2       6 mod 3 = 0

Relation R has the following pairs:

? 
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Equivalence relation

Definition: A relation R on a set A is called an equivalence 
relation if it is reflexive, symmetric and transitive.

Example: Let A = {0,1,2,3,4,5,6} and

• R= {(a,b)| a,b  A, a  b mod 3}   (a is congruent to b modulo 3)

Congruencies:

• 0 mod 3 = 0       1 mod 3 = 1       2 mod 3 = 2    3 mod 3 = 0

• 4 mod 3 = 1       5 mod 3 = 2       6 mod 3 = 0

Relation R has the following pairs:

• (0,0)                                    (0,3), (3,0), (0,6), (6,0)

• (3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

• (2,2), (2,5), (5,2), (5,5)
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Equivalence relation

• Relation R on A={0,1,2,3,4,5,6}  has the following pairs:

(0,0)              (0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive? 

1

2

3

4

5

6

0
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Equivalence relation

• Relation R on A={0,1,2,3,4,5,6}  has the following pairs:

(0,0)              (0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive? Yes.

• Is R symmetric?  1

2

3

4

5

6

0

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence relation

• Relation R on A={0,1,2,3,4,5,6}  has the following pairs:

(0,0)              (0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive? Yes.

• Is R symmetric?  Yes.

• Is R transitive?  
1

2

3

4

5

6

0
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Equivalence relation

• Relation R on A={0,1,2,3,4,5,6}  has the following pairs:

(0,0)              (0,3), (3,0), (0,6), (6,0)

(3,3), (3,6) (6,3), (6,6)        (1,1),(1,4), (4,1), (4,4)

(2,2), (2,5), (5,2), (5,5)

• Is R reflexive? Yes.

• Is R symmetric?  Yes.

• Is R transitive. Yes.

Then

• R is an equivalence relation.
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0
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Equivalence class

Theorem: Let R be an equivalence relation on a set A.  The 
following statements are equivalent:

• i) a R b

• ii) [a] = [b]

• iii) [a]  [b] ≠.

Proof: (iii)  (i)

• Suppose [a]  [b] ≠ , want to show a R b.

• [a]  [b] ≠  x  [a]  [b]  x  [a] and x  [b]  (a,x) and 
(b,x)  R.  

• Since R is symmetric (x,b)  R.  By the transitivity of R (a,x)  R 
and (x,b)  R implies (a,b)  R  a R b.


