

]	[rref]	exive	relati	ion	
Irreflexi	ve relation	ı				
/				,	and only if $a \neq b$.	
• R _≠ ={(1	,2),(1,3),(1,4),(2,1),(2	,3),(2,4),	(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}	
		0	1	1	1	
		1	0	1	1	
MR	=	1	1	0	1	
		1	1	1	0	
	u <mark>tion R is i</mark> on on its m			nd only	if MR has 0 in every	
		CS 441 D	iscrete math	ematics for C	s M. Hausi	krech

M. Hauskrecht

Definition (transitive relation): A relation R on a set A is called transitive if (a,b) ∈ R and (b,c) ∈ R] → (a,c) ∈ R for all a, b, c ∈ A. Example 2: R_≠ en A={1,2,3,4}, such that a R_≠ b if and only if a ≠ b. R_≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3))} Is R_≠ transitive? Answer: No. It is not transitive since (1,2) ∈ R and (2,1) ∈ R but (1,1) is not an element of R.

Combining relations	
Example:	
• Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and	
• $R1 = \{(1,u), (2,u), (2,v), (3,u)\}$	
• $R2 = \{(1,v), (3,u), (3,v)\}$	
What is: • $R1 \cup R2 = \{(1,u), (1,v), (2,u), (2,v), (3,u), (3,v)\}$ • $R1 \cap R2 = \{(3,u)\}$	
• $R1 - R2 = \{(1,u), (2,u), (2,v)\}$	
• $R2 - R1 = ?$	
CS 441 Discrete mathematics for CS	M. Hauskrecht

Composite of relations
Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where $a \in A$ and $c \in C$, and for which there is a $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by S o R.
Examples:
• Let $A = \{1,2,3\}, B = \{0,1,2\}$ and $C = \{a,b\}$.
• $R = \{(1,0), (1,2), (3,1), (3,2)\}$
• $S = \{(0,b), (1,a), (2,b)\}$
• S o R = {(1,b),(3,a),(3,b)}
CS 441 Discrete mathematics for CS M. Hauskrecht

]	[mple	ement	tation	of co	mpos	site	
Examples:							
• Let A = {	1,2}, B	= {1,2,	3} C = {	a,b}			
• $R = \{(1,2)\}$),(1,3),	$(2,1)$ } is	s a relati	on fron	n A to I	3	
• $S = \{(1,a)\}$),(3,b),(3,a)} is	a relatio	on from	B to C	· -	
• S O R =							
	1		,,,		1	0	
$M_R = 1$	0	0	Ms	=	0	0	
ĸ			5		1	1	
$M_R \odot M_S$	=	?					
		CS 441 D	iscrete mather	natics for C	s		M. Hauskrecht

]	Imple	ement	ation	of co	mpos	site	
Examples:							
• Let $A = \{$,					
• $R = \{(1,2)\}$),(1,3),	(2,1)} is	s a relati	on fron	n A to I	3	
• $S = \{(1,a)\}$),(3,b),((3,a)} is	a relatio	on from	B to C	· ·	
• S O R =	{(1,b),(1,a),(2,	a)}				
0	1	1			1	0	
$M_{R} = 1$	0	0	Ms	=	0	0	
K			5		1	1	
$M_R \odot M_S$	=	1	1				
R 5		1	0				
$M_{S \circ R} =$		1	1				
~		1	0				
		CS 441 D	iscrete mathe	matics for C	S		M. Hauskrecht

Composite of relations Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by $n^{1} = R$ and $R^{n+1} = R^n O R$. **Examples** $n = \{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $A = \{1,2,3,4\}$. $n = \{(1,3),(1,4),(2,3),(3,3)\}$ $n = \{(1,3),(2,3),(3,3)\}$ $n = \{(1,3),(2,3),(3,3)\}$ $n = \{(1,3),(2,3),(3,3)\}$ $n = \{(1,3),(2,3),(3,3)\}$ $n = (1,3),(2,3),(3,3)\}$

Connection to Rⁿ

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3,

Proof: biconditional (if and only if)

(→) Suppose R is transitive. Show $R^n \subseteq R$, for n = 1, 2, 3, ...

- Let $P(n) : R^n \subseteq R$. Mathematical induction.
- **Basis Step:** P(1) says $R^1 = R$ so, $R^1 \subseteq R$ is true.
- **Inductive Step:** show $P(n) \rightarrow P(n+1)$
- Want to show if $R^n \subseteq R$ then $R^{n+1} \subseteq R$.
- Let (a,b) ∈ Rⁿ⁺¹ then by the definition of Rⁿ⁺¹ = Rⁿ O R there is an element x ∈ A so that (a,x) ∈ R and (x,b) ∈ Rⁿ ⊆ R (inductive hypothesis). In addition to (a,x) ∈ R and (x,b) ∈ R, R is transitive; so (a,b) ∈ R.
- Therefore, $\mathbb{R}^{n+1} \subseteq \mathbb{R}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

