CS 441 Discrete Mathematics for CS

Lecture 22

Relations II

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Cartesian product (review)

- Let $A=\left\{a_{1}, a_{2}, . . \mathrm{a}_{\mathrm{k}}\right\}$ and $\mathrm{B}=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, . . \mathrm{b}_{\mathrm{m}}\right\}$.
- The Cartesian product A x B is defined by a set of pairs $\left\{\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right), \ldots\left(\mathrm{a}_{1}, \mathrm{~b}_{\mathrm{m}}\right), \ldots,\left(\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{m}}\right)\right\}$.

Example:

Let $A=\{a, b, c\}$ and $B=\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}$. What is $A x B$?
$A x B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}$

Binary relation

Definition: Let A and B be sets. A binary relation from \mathbf{A} to \mathbf{B} is a subset of a Cartesian product $\mathbf{A} \times$ B .

Example: Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{1,2,3\}$.

- $R=\{(a, 1),(b, 2),(c, 2)\}$ is an example of a relation from A to B.

Representing binary relations

- We can graphically represent a binary relation R as follows:
- if $\mathbf{a} \mathbf{R} \mathbf{b}$ then draw an arrow from a to b .

$$
\mathbf{a} \rightarrow \mathbf{b}
$$

Example:

- Let $\mathrm{A}=\{0,1,2\}, \mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and $\mathrm{R}=\{(0, \mathrm{u}),(0, \mathrm{v}),(1, \mathrm{v}),(2, \mathrm{u})\}$
- Note: $\mathrm{R} \subseteq \mathrm{A} x \mathrm{~B}$.
- Graph:

Representing binary relations

- We can represent a binary relation R by a table showing (marking) the ordered pairs of R.

Example:

- Let $\mathrm{A}=\{0,1,2\}, \mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and $\mathrm{R}=\{(0, \mathrm{u}),(0, \mathrm{v}),(1, \mathrm{v}),(2, \mathrm{u})\}$
- Table:

R	u	V
0	x	x
1		x
2	x	

or

R	u	v
0	1	1

1 | $0 \quad 1$
$2 \left\lvert\, \begin{array}{lll}2 & 1 & 0\end{array}\right.$

Properties of relations

Properties of relations on A :

- Reflexive \checkmark
- Irreflexive \checkmark
- Symmetric \checkmark
- Anti-symmetric
- Transitive

Reflexive relation

Reflexive relation

- $\mathrm{R}_{\mathrm{div}}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

$$
\mathrm{MR}_{\mathrm{div}}=\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

- A relation \mathbf{R} is reflexive if and only if MR has 1 in every position on its main diagonal.

Irreflexive relation

Irreflexive relation

- \mathbf{R}_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$

$M R$	0	1	1	1
1	0	1	1	
1	1	0	1	
1	1	1	0	

- A relation \mathbf{R} is irreflexive if and only if MR has 0 in every position on its main diagonal.

Symmetric relation

Symmetric relation:

- R_{\neq}on $A=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$

| |
| :--- | :--- | :--- | :--- | :--- |
| $M R$ |$\quad=$| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 1 |
| 1 | | |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

- A relation \mathbf{R} is symmetric if and only if $\mathrm{m}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{ji}}$ for all i, j.

Anti-symmetric relation

Definition (anti-symmetric relation): A relation on a set A is called anti-symmetric if

- $[(a, b) \in R$ and $(b, a) \in R] \rightarrow a=b$ where $a, b \in A$.

Example 3:

- Relation $\mathrm{R}_{\text {fun }}$ on $\mathrm{A}=\{1,2,3,4\}$ defined as:

$$
\text { - } \mathrm{R}_{\mathrm{fun}}=\{(1,2),(2,2),(3,3)\} \text {. }
$$

- Is $\mathbf{R}_{\text {fun }}$ anti-symmetric?
- Answer: Yes. It is anti-symmetric

Anti-symmetric relation

Antisymmetric relation

- relation $\mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\}$

$\mathrm{MR}_{\text {fun }}=\quad$| 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 |

- A relation is antisymmetric if and only if $\mathrm{m}_{\mathrm{ij}}=1 \rightarrow \mathrm{~m}_{\mathrm{ji}}=0$ for $\mathrm{i} \neq \mathrm{j}$.

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 1:
- $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Is $\mathbf{R}_{\text {div }}$ transitive?
- Answer:

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 1:
- $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Is $\mathbf{R}_{\text {div }}$ transitive?
- Answer: Yes.

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if
$\cdot[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.

- Example 2:
- \mathbf{R}_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$
- Is \mathbf{R}_{\neq}transitive ?
- Answer:

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 2:
- \mathbf{R}_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$
- Is \mathbf{R}_{\neq}transitive?
- Answer: No. It is not transitive since $(1,2) \in \mathrm{R}$ and $(2,1) \in \mathrm{R}$ but $(1,1)$ is not an element of R.

Transitive relations

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 3:
- Relation $\mathrm{R}_{\text {fun }}$ on $\mathrm{A}=\{1,2,3,4\}$ defined as:
- $\mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\}$.
- Is $\mathbf{R}_{\text {fun }}$ transitive?
- Answer:

Transitive relations

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 3:
- Relation $R_{\text {fun }}$ on $\mathrm{A}=\{1,2,3,4\}$ defined as:
- $\mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\}$.
- Is $\mathbf{R}_{\text {fun }}$ transitive?
- Answer: Yes. It is transitive.

Combining relations

Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product $\mathrm{A} \times \mathrm{B}$.

- Let $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$ means R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Combining Relations

- Relations are sets \rightarrow combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.

Combining relations

Example:

- Let $A=\{1,2,3\}$ and $B=\{u, v\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$

What is:

- $\mathrm{R} 1 \cup \mathrm{R} 2=$?

Combining relations

Example:

- Let $A=\{1,2,3\}$ and $B=\{u, v\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$

What is:

- $\mathrm{R} 1 \cup \mathrm{R} 2=\{(1, \mathrm{u}),(1, \mathrm{v}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- $\mathrm{R} 1 \cap \mathrm{R} 2=$?

Combining relations

Example:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$

What is:

- R1 $\cup \mathrm{R} 2=\{(1, \mathrm{u}),(1, \mathrm{v}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- $\mathrm{R} 1 \cap \mathrm{R} 2=\{(3, \mathrm{u})\}$
- $\mathrm{R} 1-\mathrm{R} 2=$?

Combining relations

Example:

- Let $A=\{1,2,3\}$ and $B=\{u, v\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$

What is:

- $\mathrm{R} 1 \cup \mathrm{R} 2=\{(1, \mathrm{u}),(1, \mathrm{v}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- $\mathrm{R} 1 \cap \mathrm{R} 2=\{(3, \mathrm{u})\}$
- R1-R2 $=\{(1, u),(2, u),(2, v)\}$
- $\mathrm{R} 2-\mathrm{R} 1=$?

Combining relations

Example:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$

What is:

- R1 $\cup \mathrm{R} 2=\{(1, \mathrm{u}),(1, \mathrm{v}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- $\mathrm{R} 1 \cap \mathrm{R} 2=\{(3, \mathrm{u})\}$
- R1-R2 $=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v})\}$
- R2 - R1 = $\{(1, \mathrm{v}),(3, \mathrm{v})\}$

Combination of relations

Representation of operations on relations:

- Question: Can the relation be formed by taking the union or intersection or composition of two relations R1 and R2 be represented in terms of matrix operations?
- Answer: Yes

Combination of relations: implementation

Definition. The join, denoted by \vee, of two m-by-n matrices $\left(a_{i j}\right)$
and $\left(\mathrm{b}_{\mathrm{ij}}\right)$ of 0 s and 1 s is an m-by-n matrix $\left(\mathrm{m}_{\mathrm{ij}}\right)$ where

- $\mathrm{m}_{\mathrm{ij}}=\quad \mathrm{a}_{\mathrm{ij}} \vee \mathrm{b}_{\mathrm{ij}} \quad$ for all i, j
$=$ pairwise or (disjunction)
- Example:
- Let $A=\{1,2,3\}$ and $B=\{u, v\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- MR1 =1 $0 \quad$ MR2 $=0 \quad 1 \quad$ M(R1 \vee R2)= $1 \quad 1$

1	1	0	0	1	1
1	0	1	1	1	1

Combination of relations: implementation

Definition. The meet, denoted by \wedge, of two m-by-n matrices $\left(\mathrm{a}_{\mathrm{ij}}\right)$ and $\left(\mathrm{b}_{\mathrm{ij}}\right)$ of 0 s and 1 s is an m -by-n matrix $\left(\mathrm{m}_{\mathrm{ij}}\right)$ where

- $\mathrm{m}_{\mathrm{ij}}=\quad \mathrm{a}_{\mathrm{ij}} \wedge \mathrm{b}_{\mathrm{ij}}$ for all i, j
$=$ pairwise and (conjunction)
- Example:
- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and
- $\mathrm{R} 1=\{(1, \mathrm{u}),(2, \mathrm{u}),(2, \mathrm{v}),(3, \mathrm{u})\}$
- $\mathrm{R} 2=\{(1, \mathrm{v}),(3, \mathrm{u}),(3, \mathrm{v})\}$
- MR1 =1 0 MR2 = $\mathbf{0} \quad 1 \quad$ MR1 $\wedge M R 2=0 \quad 0$

1	1	0	0	0
1	0	1	1	$\mathbf{1}$
	0			

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $\mathrm{a} \in \mathrm{A}$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in \mathrm{S}$. We denote the composite of R and S by So o .

Examples:

- Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{0,1,2\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$.
- $\mathrm{R}=\{(1,0),(1,2),(3,1),(3,2)\}$
- $\mathrm{S}=\{(0, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{~b})\}$
- So R=?

Composite of relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and c $\in \mathrm{C}$, and for which there is $\mathrm{a} b \in \mathrm{~B}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and (b, c) $\in \mathrm{S}$. We denote the composite of R and S by S o R .

Examples:

- Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{0,1,2\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$.
- $\mathrm{R}=\{(1,0),(1,2),(3,1),(3,2)\}$
- $S=\{(0, b),(1, a),(2, b)\}$
- $\operatorname{Sor}=\{(1, \mathrm{~b}),(3, \mathrm{a}),(3, \mathrm{~b})\}$

Implementation of composite

Definition. The Boolean product, denoted by \odot, of an m-by-n matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)$ and n-by-p matrix $\left(\mathrm{b}_{\mathrm{jk}}\right)$ of 0 s and 1 s is an m-by-p matrix $\left(\mathrm{m}_{\mathrm{ik}}\right)$ where

- $\mathrm{m}_{\mathrm{ik}}=1$, if $\mathrm{a}_{\mathrm{ij}}=1$ and $\mathrm{b}_{\mathrm{jk}}=1$ for some $\mathrm{k}=1,2, \ldots, \mathrm{n}$ 0 , otherwise

Examples:

- Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{0,1,2\}$ and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$.
- $\mathrm{R}=\{(1,0),(1,2),(3,1),(3,2)\}$
- $\mathrm{S}=\{(0, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{~b})\}$
- $\quad \mathrm{S}$ o $\mathrm{R}=\{(1, \mathrm{~b}),(3, \mathrm{a}),(3, \mathrm{~b})\}$

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\}, \mathrm{B}=\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathrm{R}=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

0	1	1		
$M_{R}=1$	0	0	$\quad \mathrm{M}_{\mathrm{S}} \quad=$	1
:---				
0				
$\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{S}}$				

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $R=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$
$\begin{array}{lllllll}0 & 1 & 1 \\ M_{R}=1 & 0 & 0\end{array} \quad \mathrm{M}_{\mathrm{S}} \quad=\quad \begin{aligned} & 1 \\ & 0 \\ & 1\end{aligned}$
$\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{S}} \quad=\quad \begin{array}{ll}\mathrm{x} \\ \mathrm{x} & \mathrm{x} \\ \mathrm{x}\end{array}$

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathrm{R}=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

$\mathrm{M}_{\mathrm{R}}=$| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |$\quad \mathrm{M}_{\mathrm{S}}=$| 1 |
| :--- |
| 0 |
| 1 | | 0 |
| :--- |
| 0 |
| 1 |

$\mathrm{M}_{\mathrm{R}} \bigcirc \mathrm{M}_{\mathrm{S}}=\begin{array}{ll}1 & \mathrm{x} \\ \mathrm{x} & \mathrm{x}\end{array}$

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $R=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

$\mathrm{M}_{\mathrm{R}}=$| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |$\quad \mathrm{M}_{\mathrm{S}} \quad=$| 1 |
| :--- |
| 0 |
| 1 | | 0 |
| :--- |
| 0 |
| 1 |

$\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{S}} \quad=\quad \begin{array}{ll}1 & 1 \\ \mathrm{x} & \mathrm{x}\end{array}$

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathrm{R}=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

Implementation of composite

Examples:

- Let $\mathrm{A}=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $R=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} O \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

$\mathrm{M}_{\mathrm{R}}=$| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |\(\quad \mathrm{M}_{\mathrm{S}} \quad=\begin{aligned} \& 1

\& 0

\& 1\end{aligned}\)	0
1	

$\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{S}} \quad=\quad \begin{array}{ll}1 & 1 \\ 1 & 0\end{array}$
$\mathrm{M}_{\mathrm{SOR}}=\quad$?

Implementation of composite

Examples:

- Let $A=\{1,2\},\{1,2,3\} \mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$
- $\mathrm{R}=\{(1,2),(1,3),(2,1)\}$ is a relation from A to B
- $S=\{(1, a),(3, b),(3, a)\}$ is a relation from B to C.
- $\mathrm{S} \bigcirc \mathrm{R}=\{(1, \mathrm{~b}),(1, \mathrm{a}),(2, \mathrm{a})\}$

0	1	1			1	0		
$\mathrm{M}_{\mathrm{R}}=$	0	0					$\quad \mathrm{M}_{\mathrm{S}} \quad=$	0
:---								
1								

$\mathrm{M}_{\mathrm{R}} \bigcirc \mathrm{M}_{\mathrm{S}}=\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}$
$\begin{array}{lll}\mathrm{M}_{\mathrm{SOR}}= & 1 & 1 \\ 1 & 0\end{array}$

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathrm{n}} O \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=$?

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} O \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=$?

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} O \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=$?

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} O \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{4}=$?

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by
$\cdot \mathbf{R}^{\mathbf{1}}=\mathbf{R}$ and $\mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathrm{n}} O \mathbf{R}$.

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{4}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{\mathrm{k}}=$? , $\mathrm{k}>3$.

Composite of relations

Definition: Let R be a relation on a set A . The powers $\mathbf{R}^{\mathrm{n}}, \mathrm{n}=$ $1,2,3, \ldots$ is defined inductively by

$$
\text { - } \mathbf{R}^{1}=\mathbf{R} \quad \text { and } \quad \mathbf{R}^{\mathbf{n + 1}}=\mathbf{R}^{\mathbf{n}} \bigcirc \mathbf{R} .
$$

Examples

- $\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on $\mathrm{A}=\{1,2,3,4\}$.
- $\mathrm{R}^{1}=\mathrm{R}=\{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathrm{R}^{2}=\{(1,3),(1,4),(2,3),(3,3)\}$
- $\mathrm{R}^{3}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{4}=\{(1,3),(2,3),(3,3)\}$
- $\mathrm{R}^{\mathrm{k}}=\mathrm{R}^{3}, \mathrm{k}>3$.

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.
- Example 1:
- $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\text {div }}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Is $\mathbf{R}_{\text {div }}$ transitive?
- Answer: ?

Transitive relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a, b) \in R$ and $(b, c) \in R] \rightarrow(a, c) \in R$ for all $a, b, c \in A$.

- Example 1:

- $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Is $\mathbf{R}_{\text {div }}$ transitive?
- Answer: Yes.

Connection to $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$ for $\mathrm{n}=1,2,3, \ldots$.

Proof: biconditional (if and only if)
(\leftarrow) Suppose $R^{n} \subseteq R$, for $n=1,2,3, \ldots$.

- Let $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
- by the definition of $\mathrm{R} O \mathrm{R},(\mathrm{a}, \mathrm{c}) \in \mathrm{R} O \mathrm{R}=\mathrm{R}^{2} \subseteq \mathrm{R}$
- Therefore R is transitive.

Connection to $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq$ R for $\mathrm{n}=1,2,3, \ldots$.

Proof: biconditional (if and only if)
(\rightarrow) Suppose R is transitive. Show $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$, for $\mathrm{n}=1,2,3, \ldots$.

- Let $\mathrm{P}(\mathrm{n}): \mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$. Mathematical induction.
- Basis Step:

Connection to $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq$ R for $n=1,2,3, \ldots$.

Proof: biconditional (if and only if)
(\rightarrow) Suppose R is transitive. Show $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$, for $\mathrm{n}=1,2,3, \ldots$.

- Let $\mathrm{P}(\mathrm{n}): \mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$. Mathematical induction.
- Basis Step: $\mathrm{P}(1)$ says $\mathrm{R}^{1}=\mathrm{R}$ so, $\mathrm{R}^{1} \subseteq \mathrm{R}$ is true.

Connection to $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq$ R for $\mathrm{n}=1,2,3, \ldots$.

Proof: biconditional (if and only if)

(\rightarrow) Suppose R is transitive. Show $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$, for $\mathrm{n}=1,2,3, \ldots$.

- Let $\mathrm{P}(\mathrm{n}): \mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$. Mathematical induction.
- Basis Step: $\mathrm{P}(1)$ says $\mathrm{R}^{1}=\mathrm{R}$ so, $\mathrm{R}^{1} \subseteq \mathrm{R}$ is true.
- Inductive Step: show $\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$
- Want to show if $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$ then $\mathrm{R}^{\mathrm{n}+1} \subseteq \mathrm{R}$.

Connection to $\mathbf{R}^{\mathbf{n}}$

Theorem: The relation R on a set A is transitive if and only if $\mathrm{R}^{\mathrm{n}} \subseteq$ R for $\mathrm{n}=1,2,3, \ldots$.

Proof: biconditional (if and only if)

(\rightarrow) Suppose R is transitive. Show $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$, for $\mathrm{n}=1,2,3, \ldots$.

- Let $\mathrm{P}(\mathrm{n}): \mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$. Mathematical induction.
- Basis Step: $\mathrm{P}(1)$ says $\mathrm{R}^{1}=\mathrm{R}$ so, $\mathrm{R}^{1} \subseteq \mathrm{R}$ is true.
- Inductive Step: show $\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1)$
- Want to show if $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$ then $\mathrm{R}^{\mathrm{n}+1} \subseteq \mathrm{R}$.
- Let $(a, b) \in R^{n+1}$ then by the definition of $R^{n+1}=R^{n} O R$ there is an element $\mathrm{x} \in \mathrm{A}$ so that $(\mathrm{a}, \mathrm{x}) \in \mathrm{R}$ and $(\mathrm{x}, \mathrm{b}) \in \mathrm{R}^{\mathrm{n}} \subseteq \mathrm{R}$ (inductive hypothesis). In addition to $(a, x) \in R$ and $(x, b) \in R, R$ is transitive; so $(a, b) \in R$.
- Therefore, $\mathrm{R}^{\mathrm{n}+1} \subseteq \mathrm{R}$.

Number of reflexive relations

Theorem: The number of reflexive relations on a set A, where $|A|=n$ is: $2^{n(n-1)}$.

Proof:

- A reflexive relation R on A must contain all pairs (a, a) where $a \in A$.
- All other pairs in R are of the form $(a, b), a \neq b$, such that $a, b \in A$.
- How many of these pairs are there? Answer: $\mathrm{n}(\mathrm{n}-1)$.
- How many subsets on $\mathrm{n}(\mathrm{n}-1)$ elements are there?
- Answer: $2^{\text {n(n-1) }}$.

