CS 441 Discrete Mathematics for CS

Lecture 21b

Relations

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Cartesian product (review)

Let $A=\left\{a_{1}, a_{2}, . . a_{k}\right\}$ and $B=\left\{b_{1}, b_{2}, . . \mathrm{b}_{\mathrm{m}}\right\}$.
The Cartesian product A x B is defined by a set of pairs
$\left\{\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right), \ldots\left(\mathrm{a}_{1}, \mathrm{~b}_{\mathrm{m}}\right), \ldots,\left(\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{m}}\right)\right\}$.

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

Binary relation

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

- Let $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$ means R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.
- We use the notation $\mathbf{a} \mathbf{R} \mathbf{b}$ to denote $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$ and $\mathbf{a} \mathbb{K} \mathbf{b}$ to denote $(\mathbf{a}, \mathbf{b}) \notin \mathbf{R}$. If $\mathbf{a} \mathbf{R} \mathbf{b}$, we say a is related to b by R.

Example: Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{1,2,3\}$.

- Is $\mathrm{R}=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 2)\}$ a relation from A to B ? Yes.
- Is $\mathrm{Q}=\{(1, \mathrm{a}),(2, \mathrm{~b})\}$ a relation from A to B ? No.
- Is $\mathrm{P}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{a})\}$ a relation from A to A ? Yes

Representing binary relations

- We can graphically represent a binary relation R as follows:
- if $\mathbf{a} \mathbf{R} \mathbf{b}$ then draw an arrow from a to b.

$$
\mathbf{a} \rightarrow \mathbf{b}
$$

Example:

- Let $\mathrm{A}=\{0,1,2\}, \mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and $\mathrm{R}=\{(0, \mathrm{u}),(0, \mathrm{v}),(1, \mathrm{v}),(2, \mathrm{u})\}$
- Note: $\mathrm{R} \subseteq \mathrm{Ax}$ B.
- Graph:

Representing binary relations

- We can represent a binary relation R by a table showing (marking) the ordered pairs of R.

Example:

- Let $\mathrm{A}=\{0,1,2\}, \mathrm{B}=\{\mathrm{u}, \mathrm{v}\}$ and $\mathrm{R}=\{(0, \mathrm{u}),(0, \mathrm{v}),(1, \mathrm{v}),(2, \mathrm{u})\}$
- Table:

R	u	V
0	x	x
1		x
2	x	

or

R	u	v
0	1	1

X
$1 \left\lvert\, \begin{array}{ll}1 & 0\end{array}\right.$
2 | x
$2 \mid 10$

Relations and functions

- Relations represent one to many relationships between elements in A and B.
- Example:

- What is the difference between a relation and a function from A to B?

Relations and functions

- Relations represent one to many relationships between elements in A and B.
- Example:

- What is the difference between a relation and a function from A to B? A function defined on sets $\mathrm{A}, \mathrm{B} \quad \mathrm{A} \rightarrow \mathrm{B}$ assigns to each element in the domain set A exactly one element from B . So it is a special relation.

Relation on the set

Definition: A relation on the set \mathbf{A} is a relation from A to itself.

Example 1:

- Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}_{\text {div }}=\{(\mathrm{a}, \mathrm{b}) \mid$ a divides b$\}$
- What does $\mathrm{R}_{\text {div }}$ consist of?
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
-

R	1	2	3	4	
1	\mid	x	x	x	x
2	\mid		x		x
3				x	
4					x

Relation on the set

Example:

- Let $\mathrm{A}=\{1,2,3,4\}$.
- Define $a R_{\neq} b$ if and only if $a \neq b$.
$\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$
-

R		1	2	3	4
1	\mid		x	x	x
2	\mid	x		x	x
3	\mid	x	x		x
4		x	x	x	

Binary relations

- Theorem: The number of binary relations on a set A , where $|\mathrm{A}|=\mathrm{n}$ is:

$$
2^{n^{2}}
$$

- Proof:
- If $|\mathrm{A}|=\mathrm{n}$ then the cardinality of the Cartesian product $|\mathrm{AxA}|=\mathrm{n}^{2}$.
- R is a binary relation on A if $\mathrm{R} \subseteq \mathrm{Ax} \mathrm{A}$ (that is, R is a subset of A x A).
- The number of subsets of a set with k elements : 2^{k}
- The number of subsets of $\mathrm{A} \times \mathrm{A}$ is : $2^{|A x A|}=2^{n^{2}}$

Binary relations

- Example: Let $\mathrm{A}=\{1,2\}$
- What is $\mathrm{A} \times \mathrm{A}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$
- List of possible relations (subsets of A $\times \mathbf{A}$):
- \varnothing
- $\{(1,1)\} \quad\{(1,2)\} \quad\{(2,1)\} \quad\{(2,2)\} \quad$.... 4
- $\{(1,1),(1,2)\}\{(1,1),(2,1)\}\{(1,1),(2,2)\} \quad \ldots .6$
$\{(1,2),(2,1)\} \quad\{(1,2),(2,2)\}\{(2,1),(2,2)\}$
- $\{(1,1),(1,2),(2,1)\}\{(1,1),(1,2),(2,2)\}$
.... 4
$\{(1,1),(2,1),(2,2)\} \quad\{(1,2),(2,1),(2,2)\}$
- $\{(1,1),(1,2),(2,1),(2,2)\}$
.... 1
- Use formula: $\mathbf{2}^{\mathbf{4}}=\mathbf{1 6}$

Properties of relations

Definition (reflexive relation) : A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- Is $\mathbf{R}_{\text {div }}$ reflexive?
- $\mathrm{R}_{\text {div }}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Answer: Yes. $(1,1),(2,2),(3,3)$, and $(4,4) \in$ A.

Reflexive relation

Reflexive relation

- $\mathrm{R}_{\mathrm{div}}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

$$
\mathrm{MR}_{\mathrm{div}}=\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

- A relation \mathbf{R} is reflexive if and only if MR has 1 in every position on its main diagonal.

Properties of relations

Definition (reflexive relation) : A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example 2:

- Relation $R_{\text {fun }}$ on $A=\{1,2,3,4\}$ defined as:
- $\mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\}$.
- Is $\mathbf{R}_{\text {fun }}$ reflexive?
- No. It is not reflexive since $(1,1) \notin \mathrm{R}_{\text {fun }}$.

Properties of relations

Definition (irreflexive relation): A relation R on a set A is called irreflexive if (a,a) $\notin \mathbf{R}$ for every $a \in A$.

Example 1:

- Assume relation R_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- Is \mathbf{R}_{\neq}irreflexive?
- $\mathbf{R}_{\neq}=$...

Properties of relations

Definition (irreflexive relation): A relation R on a set A is called irreflexive if (\mathbf{a}, \mathbf{a}) $\notin \mathbf{R}$ for every $\mathbf{a} \in \mathbf{A}$.

Example 1:

- Assume relation R_{\neq}on $A=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- Is \mathbf{R}_{\neq}irreflexive?
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$
- Answer: Yes. Because $(1,1),(2,2),(3,3)$ and $(4,4) \notin \mathrm{R}_{\neq}$

Irreflexive relation

Irreflexive relation

- \mathbf{R}_{\neq}on $A=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$

MR $\quad=\quad$| 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

- A relation \mathbf{R} is irreflexive if and only if MR has 0 in every position on its main diagonal.

Properties of relations

Definition (irreflexive relation): A relation R on a set A is called irreflexive if (\mathbf{a}, \mathbf{a}) $\notin \mathbf{R}$ for every $\mathbf{a} \in \mathbf{A}$.

Example 2:

- $\mathrm{R}_{\text {fun }}$ on $\mathrm{A}=\{1,2,3,4\}$ defined as:
- $\mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\}$.
- Is $\mathbf{R}_{\text {fun }}$ irreflexive?
- Answer: No. Because $(2,2)$ and $(3,3) \in \mathrm{R}_{\text {fun }}$

Properties of relations

$\underline{\text { Definition (symmetric relation): A relation } \mathrm{R} \text { on a set } \mathrm{A} \text { is called }}$ symmetric if

$$
\forall \mathrm{a}, \mathrm{~b} \in \mathrm{~A} \quad(\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \rightarrow(\mathrm{~b}, \mathrm{a}) \in \mathrm{R} .
$$

Example 1:

- $\mathrm{R}_{\text {div }}=\{(\mathrm{a} b)$, if $\mathrm{a} \mid \mathrm{b}\}$ on $\mathrm{A}=\{1,2,3,4\}$
- Is $\mathbf{R}_{\text {div }}$ symmetric?
- $\mathrm{R}_{\mathrm{div}}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- Answer: No. It is not symmetric since $(1,2) \in R$ but $(2,1) \notin R$.

Properties of relations

$\underline{\text { Definition (symmetric relation): A relation } \mathrm{R} \text { on a set } \mathrm{A} \text { is called }}$ symmetric if

$$
\forall \mathrm{a}, \mathrm{~b} \in \mathrm{~A} \quad(\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \rightarrow(\mathrm{~b}, \mathrm{a}) \in \mathrm{R}
$$

Example 2:

- \mathbf{R}_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- Is \mathbf{R}_{\neq}symmetric ?
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , 4) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$
- Answer: Yes. If $(a, b) \in R_{f} \rightarrow(b, a) \in R_{\neq}$

Symmetric relation

Symmetric relation:

- \mathbf{R}_{\neq}on $\mathrm{A}=\{1,2,3,4\}$, such that $\mathbf{a} \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathrm{a} \neq \mathrm{b}$.
- $\mathbf{R}_{\neq}=\{\mathbf{(1 , 2) , (\mathbf { 1 } , \mathbf { 3 }) , (\mathbf { 1 } , \mathbf { 4 }) , (\mathbf { 2 } , \mathbf { 1 }) , (\mathbf { 2 } , \mathbf { 3 }) , (\mathbf { 2 } , \mathbf { 4 }) , (\mathbf { 3 } , \mathbf { 1 }) , (\mathbf { 3 } , \mathbf { 2 }) , (\mathbf { 3 } , \mathbf { 4 }) , (\mathbf { 4 } , \mathbf { 1 }) , (\mathbf { 4 } , \mathbf { 2 }) , (\mathbf { 4 } , \mathbf { 3 }) \}}$

MR $=$| 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

- A relation R is symmetric if and only if $\mathrm{m}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{ji}}$ for all i, j.

Properties of relations

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$
\forall \mathrm{a}, \mathrm{~b} \in \mathrm{~A} \quad(\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \rightarrow(\mathrm{~b}, \mathrm{a}) \in \mathrm{R}
$$

Example 3:

- Relation $\mathrm{R}_{\text {fun }}$ on $\mathrm{A}=\{1,2,3,4\}$ defined as:

$$
\text { - } \mathrm{R}_{\text {fun }}=\{(1,2),(2,2),(3,3)\} .
$$

- Is $\mathbf{R}_{\text {fun }}$ symmetric?
- Answer: No. For $(1,2) \in \mathrm{R}_{\text {fun }}$ there is no $(2,1) \in \mathrm{R}_{\text {fun }}$

