## CS 441 Discrete Mathematics for CS

## Lecture 21

## Probabilities: Expected value

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

## Probability basics

Sample space S: space of all possible outcomes
Event E: a subset of outcomes
Probability: a number in [0,1] we can associate with an an outcome or an event

$$
p(E)=\sum_{s \in E} p(s)
$$

Probability distribution
A function p : $\mathrm{S} \rightarrow[0,1]$ that assigns a probability to every possible outcome in S

$$
\sum_{s \in S} p(s)=1
$$

## Conditional probability

Definition: Let E and F be two events such that $\mathrm{P}(\mathrm{F})>0$. The conditional probability of E given F

- $P(E \mid F)=P(E \mid F)=P(E \cap F) / P(F)$

Corrolary: Let $E$ and $F$ be two events such that $P(F)>0$. Then:

- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E} \mid \mathrm{F}) * \mathrm{P}(\mathrm{F})$

This result is also referred to as a product rule.

## Bayes theorem

Definition: Let E and F be two events such that $\mathrm{P}(\mathrm{F})>0$. Then:

- $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) / \mathrm{P}(\mathrm{F})$

$$
=\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) /(\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F} \mid \sim \mathrm{E}) \mathrm{P}(\sim \mathrm{E}))
$$

- Expresses P(E | F) in terms of $\mathbf{P}(\mathbf{F} \mid E)$
- conditioning event are switched


## Independence

Definition: The two events $E$ and $F$ are said to be independent if:

- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$


## Random variables

- A random variable is a function from the sample space of an experiment to the set of real numbers $f: S \rightarrow R$. A random variable assigns a number to each possible outcome.
- The distribution of a random variable $X$ on the sample space $\mathbf{S}$ is a set of pairs ( $r p(X=r)$ ) for all $r$ in $S$ where $r$ is the number and $p(X=r)$ is the probability that $X$ takes a value $r$.


## Random variables

## Example:

Let $S$ be the outcomes of a two-dice roll
Let random variable $X$ denotes the sum of outcomes
$(1,1) \rightarrow 2$
$(1,2)$ and $(2,1) \rightarrow 3$
$(1,3),(3,1)$ and $(2,2) \rightarrow 4$

## Distribution of X :

- $2 \rightarrow 1 / 36$,
- $3 \rightarrow 2 / 36$,
- $4 \rightarrow 3 / 36 \ldots$
- $12 \rightarrow 1 / 36$


## Expected value

Definition: The expected value of the random variable $\mathrm{X}(\mathrm{s})$ on the sample space is equal to:

$$
E(X)=\sum_{s \in S} p(s) X(s)
$$

Example: roll of a dice

- Outcomes: 123456
- Expected value:
$E(X)=1 * 1 / 6+2 * 1 / 6+3 * 1 / 6+4 * 1 / 6+5^{*} 1 / 6+6 * 1 / 6=7 / 2$


## Expected value

## Investment problem:

- You have 100 dollars and can invest into a stock. The returns are volatile and you may get either $\$ 120$ with probability of 0.4 , or $\$ 90$ with probability 0.6.
- What is the expected value of your investment?
- 


## Expected value

## Investment problem:

- You have 100 dollars and can invest into a stock. The returns are volatile and you may get either $\$ 120$ with probability of 0.4 , or $\$ 90$ with probability 0.6.
- What is the expected value of your investment?
- $\mathrm{E}(\mathrm{X})=0.4^{*} 120+0.6 * 90=48+54=102$
- Is it OK to invest?


## Decision making example

We need to make a choice whether to invest in Stock 1 or 2, put money into bank or keep them at home.


## Decision making example.

Assume the simplified problem with the Bank and Home choices only.
The result is guaranteed - the outcome is deterministic


What is the rational choice assuming our goal is to make money?

## Decision making. Deterministic outcome.

Assume the simplified problem with the Bank and Home choices only.
These choices are deterministic.


Our goal is to make money. What is the rational choice?
Answer: Put money into the bank. The choice is always strictly better in terms of the outcome

## Decision making

- How to quantify the goodness of the stochastic outcome?

We want to compare it to deterministic and other stochastic outcomes.


Idea: Use the expected value of the outcome

## Expected value

- Expected value summarizes all stochastic outcomes into a single quantity
- Expected value for the outcome of the Stock 1 option is:



## Expected values

## Investing \$100 for $\mathbf{6}$ months



## Expected values

Investing \$100 for $\mathbf{6}$ months


## Selection based on expected values

The optimal action is the option that maximizes the expected outcome:


