## CS 441 Discrete Mathematics for CS

Lecture 20

## Probabilities

## Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

## Probabilities

Three axioms of the probability theory:
(1) Probability of a discrete outcome is:

- $0<=\mathrm{P}(\mathrm{s})<=1$
(2) Sum of probabilities of all (disjoint) outcomes is = 1
(3) For any two events E1 and E2 holds:

$$
\text { P(E1 U E2) = P(E1) + P(E2) - P(E1 } \cap \mathrm{E} 2)
$$

## Probability distribution

Definition: A function $\mathbf{p}: \mathbf{S} \boldsymbol{T} \mathbf{0 , 1}]$ satisfying the three conditions is called a probability distribution

Example: a biased coin

- Probability of head 0.6 , probability of a tail 0.4
- Probability distribution:
- Head $\rightarrow 0.6 \quad$ The sum of the probabilities sums to 1
- Tail $\rightarrow 0.4$

Note: a uniform distribution is a special distribution that assigns equal probabilities to each outcome.

## Probability of an Event

Definition: The probability of the event $E$ is the sum of the probabilities of the outcomes in $E$.

$$
p(E)=\sum_{s \in S} p(s)
$$

- Note that now no assumption is being made about the distribution.


## Complement:

- $\mathrm{P}(\sim \mathrm{E})=1-\mathrm{P}(\mathrm{E})$


## Complements

Let E and F are two events. Then:

- $\mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{F} \cap \mathrm{E})+\mathrm{P}(\mathrm{F} \cap \sim \mathrm{E})$

Sample space


## Conditional probability

Definition: Let E and F be two events such that $\mathrm{P}(\mathrm{F})>0$. The conditional probability of E given F

- $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E} \cap \mathrm{F}) / \mathrm{P}(\mathrm{F})$

Corrolary: Let $E$ and $F$ be two events such that $P(F)>0$. Then:

- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E} \mid \mathrm{F}) * \mathrm{P}(\mathrm{F})$

This result is also referred to as a product rule.

## Conditional probability

## Product rule:

- $P(E \cap F)=P(E \mid F) P(F)$


## Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of having a high fever given the flu: 0.9

What is the probability of getting a flu with fever?
$\mathrm{P}(\mathrm{flu} \wedge$ fever $)=\mathrm{P}($ fever $\mid$ flu $) \mathrm{P}(\mathrm{flu})=0.9 * 0.2=0.18$

- When is this useful?

Sometimes conditional probabilities are easier to estimate.

## Bayes theorem

Definition: Let $E$ and $F$ be two events such that $\mathrm{P}(\mathrm{F})>0$. Then:

- $P(E \mid F)=P(F \mid E) P(E) / P(F)$ $=P(F \mid E) P(E) /(P(F \mid E) P(E)+P(F \mid \sim E) P(\sim E))$
Proof:

$$
\begin{aligned}
P(E \mid F) & =P(E \cap F) / P(F) \\
& =P(F \mid E) P(E) / P(F) \\
P(F) & =P(F \cap E)+P(F \cap \sim E) \\
& =P(F \mid E) P(E)+P(F \mid \sim E) P(\sim E)
\end{aligned}
$$

Hence:
$\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) /(\mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F} \mid \sim \mathrm{E}) \mathrm{P}(\sim \mathrm{E}))$

Idea: Simply switch the conditioning events.

## Bayes theorem

Definition: Let $E$ and $F$ be two events such that $P(F)>0$. Then:

- $P(E \mid F)=P(F \mid E) P(E) / P(F)$

$$
=\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) /(\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F} \mid \sim \mathrm{E}) \mathrm{P}(\sim \mathrm{E}))
$$

## Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of getting a fever is 0.3
- Assume the probability of having a high fever given the flu: 0.9
- What is the probability of having a flu given the fever?


## Bayes theorem

Definition: Let E and F be two events such that $\mathrm{P}(\mathrm{F})>0$. Then:

- $P(E \mid F)=P(F \mid E) P(E) / P(F)$

$$
=\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) /(\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F} \mid \sim \mathrm{E}) \mathrm{P}(\sim \mathrm{E}))
$$

## Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of getting a fever is 0.3
- Assume the probability of having a fever given the flu: 0.9
- What is the probability of having a flu given the fever?
- $\mathrm{P}(\mathrm{flu} \mid$ fever $)=\mathrm{P}($ fever $\mid$ flu $) \mathrm{P}(f l u) / \mathrm{P}($ fever $)=$

$$
=0.9 \times 0.2 / 0.3=0.18 / 0.3=0.6
$$

## Bayes theorem

Definition: Let $E$ and $F$ be two events such that $P(F)>0$. Then:

- $P(E \mid F)=P(F \mid E) P(E) / P(F)$

$$
=\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E}) /(\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F} \mid \sim \mathrm{E}) \mathrm{P}(\sim \mathrm{E}))
$$

Example (same as above but different probabilities are given):

- Assume the probability of getting a flu is 0.2
- Assume the probability of having a fever given the flu: 0.9
- Assume the probability of having a fever given no flue: 0.15
- What is the probability of having a flu given the fever?


## Bayes theorem

Definition: Let $E$ and $F$ be two events such that $P(F)>0$. Then:

- $P(E \mid F)=P(F \mid E) P(E) / P(F)$

$$
=P(F \mid E) P(E) /(P(F \mid E) P(E)+P(F \mid \sim E) P(\sim E))
$$

## Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of having a fever given the flu: 0.9
- Assume the probability of having a fever given no flue: 0.15
- What is the probability of having a flu given the fever?
- $\mathrm{P}(\mathrm{flu} \mid$ fever $)=\mathrm{P}($ fever | flu) $\mathrm{P}(f l u) / \mathrm{P}(f e v e r)$
- $\mathrm{P}($ fever $)=\mathrm{P}($ fever $\mid$ flu $) \mathrm{P}(f l u)+\mathrm{P}($ fever $\mid \sim f l u) \mathrm{P}(\sim f l u)$

$$
=0.9 * 0.2+0.15 * 0.8=0.3
$$

$\mathrm{P}(\mathrm{flu} \mid$ fever $)=\mathbf{0 . 9} \mathbf{x} \mathbf{0 . 2} / \mathbf{0 . 3}=\mathbf{0 . 1 8 / 0 . 3}=\mathbf{0 . 6}$

## Independence

Definition: The two events $E$ and $F$ are said to be independent if:

- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$


## Independence

Definition: The events $E$ and $F$ are said to be independent if:

- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$

Example. Assume that E denotes the family has three children of both sexes and F the fact that the family has at most one boy. Are E and F independent?

- All combos $=\{B B B, B B G, B G B, G B B, B G G, G B G, G G B, G G G\}$ the number of elements $=8$
- Both sexes $=\{$ BBG BGB GBB BGG GBG GGB $\} \quad \#=6$
- At most one boy = \{GGG GGB GBG BGG $\} \quad \#=4$
- $\mathrm{E} \cap \mathrm{F}=\{\mathrm{GGB}$ GBG BGG $\} \quad \#=3$
- $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=3 / 8 \quad$ and $\quad \mathrm{P}(\mathrm{E}) * \mathrm{P}(\mathrm{F})=4 / 86 / 8=3 / 8$
- The two probabilities are equal $\rightarrow \mathrm{E}$ and F are independent


## Independence

## Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of getting a fever is 0.3
- Assume the probability of having a fever given the flu: 0.9
- Are flu and fever independent ?
- $P(f l u \cap$ fever $)=\mathbf{P}($ fever $\mid f l u) * P(f l u)=0.2 * 0.9=0.18$
- $\mathbf{P}(\mathbf{f l u})$ * $\mathbf{P}(\mathbf{f e v e r})=0.2$ * $0.3=0.06$
- Independent or not? Not independent


## Bernoulli trial

Assume:

- $\mathbf{p}=0.6$ is a probability of seeing head
- 0.4 is the probability of seeing tail

Assume we see a sequence of independent coin flips:

- HHHTTHTHHT
- The probability of seeing this sequence:

$$
0.6^{6} * 0.4^{4}
$$

- What is the probability of seeing a sequence of with 6 Heads and 4 tails?
- The probability of each such sequence is $0.6^{6 *} 0.4^{4}$
- How many such sequences are there: $C(10,4)$
- $\mathrm{P}(6 \mathrm{H}$ and 4 T$)=\mathrm{C}(10,4) * 0.6{ }^{6} * 0.4^{4}$


## Random variables

- Definition: A random variable is a function from the sample space of an experiment to the set of real numbers $f: S \rightarrow R$. A random variable assigns a number to each possible outcome.
- The distribution of a random variable $X$ on the sample space $S$ is a set of pairs ( $r p(X=r)$ ) for all $r$ in $S$ where $r$ is the number and $p(X=r)$ is the probability that $X$ takes a value $r$.


## Random variables

## Example:

Let $S$ be the outcomes of a two-dice roll
Let random variable $X$ denotes the sum of outcomes
$(1,1) \rightarrow 2$
$(1,2)$ and $(2,1) \rightarrow 3$
$(1,3),(3,1)$ and $(2,2) \rightarrow 4$

## Distribution of X :

- $2 \rightarrow 1 / 36$,
- $3 \rightarrow 2 / 36$,
- $4 \rightarrow 3 / 36$.
- $12 \rightarrow 1 / 36$


## Probabilities

- Assume a repeated coin flip
- $P($ head $)=0.6$ and the probability of a tail is 0.4 . Each coin flip is independent of the previous.
- What is the probability of seeing:
- HHHHH - 5 heads in a row
- $\mathbf{P}(\mathbf{H H H H H})=0 . \mathbf{6}^{5}=$
- Assume the outcome is HHTTT
- $\mathbf{P}(\mathbf{H H T T T})=\mathbf{0 . 6 * 0 . 6 * 0 . 4 ~}{ }^{\mathbf{3}=0.62 * 0.4}{ }^{\mathbf{3}}$
- Assume the outcome is TTHHT
- $\mathbf{P}(\mathbf{T T H H T})=0.4^{2 *} \mathbf{0 . 6}{ }^{2 *} 0.4=0.6^{2 *} 0.4^{3}$
- What is the probability of seeing three tails and two heads?
- The number of two-head-three tail combinations $=\mathbf{C}(5,2)$
- P (two-heads-three tails) $=\mathbf{C}(\mathbf{5}, 2) * 0 . \mathbf{6}^{2}{ }^{*} \mathbf{0 . 4}{ }^{3}$


## Probabilities

- Assume a variant of a repeated coin flip problem
- The space of possible outcomes is the count of occurrences of heads in 5 coin flips. For example:
- TTTTT yields outcome 0
- HTTTT or TTHTT yields 1
- HTHHT yields 3 ...
- What is the probability of an outcome 0 ?
- $\mathrm{P}($ outcome $=0)=\mathbf{0 . 6}{ }^{\mathbf{*}} \mathbf{0 . 4}{ }^{5}$
- $\mathrm{P}($ outcome $=1)=\mathbf{C}(5,1) 0.6^{1 *} \mathbf{0 . 4}{ }^{4}$
- $\mathrm{P}($ outcome $=2)=\mathbf{C}(5,2) 0 . \mathbf{6}^{2}{ }^{*} 0 . \mathbf{4}^{3}$
- $\mathrm{P}($ outcome $=3)=\mathbf{C}(\mathbf{5}, \mathbf{3}) \mathbf{0 . 6}{ }^{\mathbf{*}} \mathbf{0 . 4} \mathbf{2}^{\mathbf{2}}$
- ...


## Expected value and variance

Definition: The expected value of the random variable $\mathrm{X}(\mathrm{s})$ on the sample space is equal to:

$$
E(X)=\sum_{s \in S} p(s) X(s)
$$

Example: roll of a dice

- Outcomes: 123456
- Expected value:

$$
\mathrm{E}(\mathrm{X})=\text { ? }
$$

## Expected value and variance

Definition: The expected value of the random variable X(s) on the sample space is equal to:

$$
E(X)=\sum_{s \in S} p(s) X(s)
$$

Example: roll of a dice

- Outcomes: 123456
- Expected value:
$E(X)=1 * 1 / 6+2 * 1 / 6+3 * 1 / 6+4 * 1 / 6+5 * 1 / 6+6 * 1 / 6=7 / 2$


## Expected value

## Example:

Flip a fair coin 3 times. The outcome of the trial X is the number of heads. What is the expected value of the trial?

Answer:
Possible outcomes:
$=\{$ HHH HHT HTH THH HTT THT TTH TTT $\}$
$\begin{array}{llllllll}3 & 2 & 2 & 2 & 1 & 1 & 1 & 0\end{array}$
$\mathrm{E}(\mathrm{X})=$ ?

## Expected value

## Example:

Flip a fair coin 3 times. The outcome of the trial X is the number of heads. What is the expected value of the trial?

Answer:
Possible outcomes:
$=\{$ HHH HHT HTH THH HTT THT TTH TTT $\}$
$\begin{array}{llllllll}3 & 2 & 2 & 2 & 1 & 1 & 1 & 0\end{array}$
$E(X)=1 / 8(3+3 * 2+3 * 1+0)=12 / 8=3 / 2$

## Expected value

- Theorem: If Xi $\mathrm{i}=1,2,3$, n with n being a positive integer, are random variables on S , and a and b are real numbers then:
- $\mathrm{E}(\mathrm{X} 1+\mathrm{X} 2+\ldots \mathrm{Xn})=\mathrm{E}(\mathrm{X} 1)+\mathrm{E}(\mathrm{X} 2)+\ldots \mathrm{E}(\mathrm{Xn})$
- $\mathrm{E}(\mathrm{aX}+\mathrm{b})=\mathrm{aE}(\mathrm{X})+\mathrm{b}$


## Expected value

## Example:

- Roll a pair of dices. What is the expected value of the sum of outcomes?
- Approach 1:
- Outcomes: $(1,1)(1,2)(1,3) \ldots(6,1) \ldots(6,6)$

| 2 | 3 | 4 | 7 | 12 |
| :--- | :--- | :--- | :--- | :--- |

Expected value: $1 / 36(2 * 1+\ldots)=$.

- Approach 2 (theorem):
- $\mathrm{E}(\mathrm{X} 1+\mathrm{X} 2)=\mathrm{E}(\mathrm{X} 1)+\mathrm{E}(\mathrm{X} 2)$
- $\mathrm{E}(\mathrm{X} 1)=7 / 2 \mathrm{E}(\mathrm{X} 2)=7 / 2$
- $\mathrm{E}(\mathrm{X} 1+\mathrm{X} 2)=7$

