

Conditional probability

Product rule:

• $P(E \cap F) = P(E|F) P(F)$

Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of having a high fever given the flu: 0.9

What is the probability of getting a flu with fever? P(flu \land fever) = P(fever | flu)P(flu) = 0.9*0.2 = 0.18

• When is this useful?

Sometimes conditional probabilities are easier to estimate.

Bayes theorem
Definition: Let E and F be two events such that $P(F) > 0$. Then:
• $P(E F) = P(F E)P(E) / P(F)$
$= P(F E)P(E) / (P(F E)P(E) + P(F \sim E)P(\sim E))$
Proof:
$P(E F) = P(E \cap F) / P(F)$
= P(F E) P(E) / P(F)
$P(F) = P(F \cap E) + P(F \cap \sim E)$
$= P(F E) P(E) + P(F \sim E) P(\sim E)$
Hence:
$P(E F) = P(F E)P(E) / (P(F E)P(E) + P(F \sim E)P(\sim E))$
Idea: Simply switch the conditioning events.
M. Hauskrecht

Bayes theorem

Definition: Let E and F be two events such that P(F) > 0. Then:

• P(E|F) = P(F|E)P(E) / P(F)

 $= P(F|E)P(E) / (P(F|E)P(E) + P(F|\sim E)P(\sim E))$

Example:

- Assume the probability of getting a flu is 0.2
- Assume the probability of getting a fever is 0.3
- Assume the probability of having a high fever given the flu: 0.9
- What is the probability of having a flu given the fever?

M. Hauskrecht

Bayes theorem	
Definition: Let E and F be two events such that $P(F) > 0$. Then	:
• $P(E F) = P(F E)P(E) / P(F)$	
$= P(F E)P(E) / (P(F E)P(E) + P(F \sim E)P(\sim E))$	
Example:	
• Assume the probability of getting a flu is 0.2	
• Assume the probability of having a fever given the flu: 0.9	
• Assume the probability of having a fever given no flue: 0.15	
• What is the probability of having a flu given the fever?	
• P(flu fever) = P(fever flu) P(flu) / P(fever)	
• $P(\text{fever}) = P(\text{fever} \text{flu}) P(\text{flu}) + P(\text{fever} \sim \text{flu}) P(\sim \text{flu})$	
$= 0.9 \times 0.2 + 0.15 \times 0.8 = 0.3$	
$P(flu fever) = 0.9 \times 0.2/0.3 = 0.18/0.3 = 0.6$	
M. Hau	ıskre

Independence

Definition: The two events E and F are said to be **independent** if:

• $P(E \cap F) = P(E)P(F)$

Bernoulli trial				
Assume: • p = 0.6 is a probability of seeing head • 0.4 is the probability of seeing tail				
 Assume we see a sequence of independent coin flips: HHHTTHTHHT The probability of seeing this sequence: 0.6 ⁶ * 0.4 ⁴ 				
 What is the probability of seeing a sequence of with Heads and 4 tails? The probability of each such sequence is 0.6⁶ * 0.4⁴ How many such sequences are there: C(10,4) P(6H and 4T) = C(10,4) *0.6⁶ * 0.4⁴ 	6			
CS 1571 Intro to AI	M. Hauskrecht			

Random variables

- Definition: A random variable is a function from the sample space of an experiment to the set of real numbers f: S → R. A random variable assigns a number to each possible outcome.
- The distribution of a random variable X on the sample space S is a set of pairs (r p(X=r)) for all r in S where r is the number and p(X=r) is the probability that X takes a value r.

Random variables			
Example:			
Let S be the outcomes of a two-dice roll			
Let random variable X denotes the sum of outcomes			
$(1,1) \rightarrow 2$			
$(1,2)$ and $(2,1) \rightarrow 3$			
$(1,3), (3,1) \text{ and } (2,2) \rightarrow 4$			
Distribution of X:			
• $2 \rightarrow 1/36$,			
• $3 \rightarrow 2/36$,			
 4 → 3/36 … 			
 12 → 1/36 			
	M. Hauskrec		

Probabilities

- Assume a repeated coin flip
- P(head) =0.6 and the probability of a tail is 0.4. Each coin flip is independent of the previous.
- What is the probability of seeing:
 - HHHHH 5 heads in a row
- $P(HHHHH) = 0.6^5 =$
 - Assume the outcome is HHTTT
- $P(HHTTT) = 0.6*0.6*0.4^{3}= 0.6^{2}*0.4^{3}$
 - Assume the outcome is TTHHT
- $P(TTHHT)=0.4^{2*}0.6^{2*}0.4=0.6^{2*}0.4^{3}$
- What is the probability of seeing three tails and two heads?
- The number of two-head-three tail combinations = C(5,2)
- P(two-heads-three tails) = $C(5,2) * 0.6^2 * 0.4^3$

M. Hauskrecht

M. Hauskrecht

<section-header><text><equation-block><equation-block><text><equation-block><list-item><list-item><list-item><equation-block>

			Expo	ected	valu	le		
Exampl	e:							
Flip a fa heads	ir coin . What	3 time t is the	es. The	outcor ted valu	ne of t ue of th	he trial ne trial	X is the?	e number of
Answer	:							
Possible	outco	mes:						
= {HHH	HHT	HTH	THH	HTT	THT	TTH	TTT}	
3	2	2	2	1	1	1	0	
E(X) = 1	/8 (3 -	+ 3*2 -	+3*1 +	0) = 12	2/8= 3/	2		M Hauskrecht

Expected value			
Example:			
• Roll a pair of outcomes?	f dices. What is the expected value of the sum of		
• Approach 1:	:		
• Outcomes: (1	1,1) (1,2) (1,3) (6,1) (6,6)		
	2 3 4 7 12		
Expected value:	: 1/36 (2*1 +) = 7		
• Approach 2 (1	(theorem):		
• $E(X1+X2) = 1$	E(X1) + E(X2)		
• E(X1) =7/2 H	E(X2) = 7/2		
• $E(X1+X2) = 1$	7		
	M. Haust		