

Product rule	
Example:	
• How many different bit strings of length 7 are there?	
• E.g. 1011010	
• Is it possible to decompose the count problem and if y	ves how?
• Yes.	
- Count the number of possible assignments to bit 1	
 For the specific first bit count possible assignment 	s to bit 2
 For the specific first two bits count assignments to bit 3 	
 Gives a sequence of n dependent counts and by the rule we have: 	e product
$n = 2*2*2*2*2*2*2*2=2^7$	
CS 441 Discrete mathematics for CS	M. Hauskrecht

Beyond basic counting rules

Example: A password for the login name.

- The minimum password length is 6 and the maximum is 8. The password can consist of either an uppercase letter or a digit. There must be at least one digit in the password.
- How to compute the number of possible passwords?

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:
 - P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

CS 441 Discrete mathematics for CS

M. Hauskrecht

Beyond basic counting rules

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:
 - P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

Step 2

- Assume passwords with 6 characters (upper-case letters):
- How many are there?
- If we let each character to be at any position we have:
 - P6-nodigits = 26^6 different passwords of length 6

CS 441 Discrete mathematics for CS

M. Hauskrecht

Beyond basic counting rules

Step 1:

- The password we select has either 6,7 or 8 characters.
- So the total number of valid passwords is by the sum rule:

• P = P6 + P7 + P8

The number of passwords of length 6,7 and 8 respectively

Step 2

- Assume passwords with 6 characters (either digits + upper case letters):
- How many are there?
- If we let each character to be at any position we have:

- P6-all = $(26+10)^6$ = $(36)^6$ different passwords of length 6

CS 441 Discrete mathematics for CS

M. Hauskrecht

M. Hauskrecht

