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Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:
— Pseudorandom number generators
— Hash functions
— Cryptology
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Pseudorandom number generators

» Some problems we want to program need to simulate a
random choice.

» Examples: flip of a coin, roll of a dice

We need a way to generate random outcomes
Basic problem:

— assume outcomes: 0, 1, .. N

— generate the random sequences of outcomes

» Pseudorandom number generators let us generate sequences that
look random

* Next: linear congruential method
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Pseudorandom number generators

Linear congruential method
* We choose 4 numbers:
* the modulus m,
» multiplier a,
* increment c, and
* seed X,
suchthat2 =<a<m,0=<c<m,0=<x,<m.

» We generate a sequence of numbers X; X, X;... X, ... such that
0 =< x, < m for all n by successively using the congruence:

X+ = (X, +C) mod m
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Pseudorandom number generators

Linear congruential method:

* Xp+1 = (X, +C) mod m
Example:
e Assume : m=9,a=7,c=4, X, = 3

* X,;= 7*3+4 mod 9=25 mod 9 =7
* X,=53mod9=8
* X;=60mod 9 =06
* X,= 46 mod9=1
* X;=11mod9 =2
* Xg=18mod 9 =0
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Hash functions

A hash function is an algorithm that maps data of arbitrary length
to data of a fixed length.

The values returned by a hash function are called hash values or
hash codes.

Example:
Hash function
John 82
Mary 02
Peter 03
Ann - 04
Charles ig
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Hash functions

* Problem: Given a large collection of records, how can we
store and find a record quickly?

e Solution: Use a hash function calculate the location of the
record based on the record’s ID.

» Example: A common hash function is
* h(k) = kmod n,
where n is the number of available storage locations.

0(1/2 3|4 |5|6 |78
-t

—
ID: 21| 21 mod9 ID: 35 | 35 mod 9
=3 =8
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Hash function

An example of a hash function that maps integers (including very
large ones) to a subset of integers 0, 1, .. m-1 is:

h(k) =k mod m

Example: Assume we have a database of employes, each with a
unique ID — a social security number that consists of 8 digits. We
want to store the records in a smaller table with m entries. Using
h(k) function we can map a social secutity number in the database
of employes to indexes in the table.

Assume: h(k) = k mod 111

Then:

h(064212848) = 064212848 mod 111 =14
h(037149212) = 037149212 mod 111 = 65
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Hash functions

* Problem: two documents mapped to the same location

0(1/2 3|4 |5|6 |78

J k
ID: 21,4 mod 9 ID:39 | 39 mod 9

=3 =3
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Hash functions

 Solution 1: move the next available location
— Method is represented by a sequence of hash functions to

try hy(k) = k mod n
h,(k) = (k+1) mod n

h, (k) = (k+m) mod n

0(1/2 3|4 |5|6 |78

—
ID: 21,4 mod 9 ID:39 | 39 mod 9
=3 =3
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Hash functions

» Solution 2: remember the exact location in a secondary
structure that is searched sequentially

ID: 39
Loc: 4

f

ID: 21
Loc: 3

t
0|1|2|3|4|5|6|7]|8

.
ID:21 |5y o odg ID:39 | 39 mod 9

=3 =3
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Cryptology

Encryption of messages.

» Ceasar cipher:

» Shift letters in the message by 3, last three letters mapped to the
first 3 letters, e.g. A is shifted to D, X is shifted to A

How to represent the idea of a shift by 3?

» There are 26 letters in the alphabet. Assign each of them a
number from 0,1, 2, 3, .. 25 according to the alphabetical order.

ABCDEFGHIJKLMNOPQRSTUYVXWZ

0123456 789101112 1314151617 1819202122232425

» The encryption of the letter with an index p is represented as:
o f(p) =(p + 3) mod 26
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Cryptology

Encryption of messages using a shift by 3.

» The encryption of the letter with an index p is represented as:
e f(p) =(p +3) mod 26

Coding of letters:

ABCDEFGHIJKLMNOPQR ST UYVXWZ
0123456 78910 1112 1314151617 18192021 22232425

* Encrypt message:
— | LIKE DISCRETE MATH
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Cryptology

Encryption of messages using a shift by 3.

» The encryption of the letter with an index p is represented as:
e f(p) = (p + 3) mod 26

Coding of letters:

ABCDEFGHIJKLMNOPQRS ST UYVXWZ
0123456 789101112 13141516171819202122232425

« Encrypt message:
- | LIKE DISCRETE MATH

- L OLNH GLYFUHVH PDVK.
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Cryptology

How to decode the message ?

» The encryption of the letter with an index p is represented as:
e f(p) =(p +3) mod 26

Coding of letters:

ABCDEFGHIJKLMNOPQR ST UYVXWZ
0123456 78910 1112 1314151617 18192021 22232425

* What method would you use to decode the message:
 f1(p) = (p-3) mod 26
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Representations of Integers

* In the modern world, we use decimal, or base 10, notation to
represent integers. For example when we write 965, we mean
9:10% + 6-10* +5-100.

» We can represent numbers using any base b, where b is a
positive integer greater than 1.

» The bases b = 2 (binary), b = 8 (octal) , and b= 16
(hexadecimal) are important for computing and
communications

» The ancient Mayans used base 20 and the ancient Babylonians
used base 60.
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Base b Representations

» We can use positive integer b greater than 1 as a base

Theorem 1: Let b be a positive integer greater than 1. Then if n is
a positive integer, it can be expressed uniquely in the form:

n=abl+a b+ ... +ab+a,
where & is a nonnegative integer, aq,a,.... a, are nonnegative

integers less than b, and ;# 0. The a,, j = 0,...,k are called the
base-b digits of the representation.

» The representation of » given in Theorem 1 is called the base
b expansion of n and is denoted by (a,a,;....8;a),.

» We usually omit the subscript 10 for base 10 expansions.
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Binary Expansions

Most computers represent integers and do arithmetic with
binary (base 2) expansions of integers. In these expansions,
the only digits used are 0 and 1.

Example: What is the decimal expansion of the integer that has
(10101 1111), as its binary expansion?

Solution:
(10101 1111), =1-28 +0-27 +1-26 +0-2> + 1-2% + 1-23
+1-22 + 1-21 + 1-2° =351.

Example: What is the decimal expansion of the integer that has
(11011), as its binary expansion?

Solution: (11011),=1-2*% 4+ 1:23 4+ 0-22 + 1-2! 4+ 1-20 =27
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Octal Expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.
Example: What is the decimal expansion of the number with
octal expansion (7016)g?
Solution: 7-8% 4+ 0-82 + 1-8! + 6-8° =3598
Example: What is the decimal expansion of the number with
octal expansion (111)g?
Solution: 1-82 + 181 + 180 =64+8+1=73
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Hexadecimal Expansions

» The hexadecimal expansion uses 16 digits:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.
— The letters A through F represent the decimal numbers 10
through 15.
Example: What is the decimal expansion of the number with
hexadecimal expansion (2AE0B),, ?
Solution:
2:16* +10-163 + 14-162 + 0-16! + 11-16° =175627
Example: What is the decimal expansion of the number with
hexadecimal expansion (E5),, ?
Solution: 14-16' + 5-16° =224 + 5 =229

M. Hauskrecht

10



Base Conversion

To construct the base » expansion of an integer »:
— Divide n by b to obtain a quotient and remainder.
n=bqy+a, 0<a,<b
— The remainder, a,, is the rightmost digit in the base b
expansion of n. Next, divide g, by b.
qo=bq,+a, 0<a,<b
— The remainder, a,, is the second digit from the right in the
base b expansion of .

— Continue by successively dividing the quotients by b,
obtaining the additional base b digits as the remainder. The
process terminates when the quotient is 0.
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Base Conversion

Example: Find the octal expansion of (12345),,
Solution: Successively dividing by 8 gives:
— 12345=8 1543 +1
— 1543=8-192+7
- 192=8-24+0
24=8-3+0
- 3=8:0+3
The remainders are the digits from right to left yielding
(30071),.
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Proofs

Basic proof methods:
 Direct, Indirect, Contradiction, By Cases, Equivalences
Proof of quantified statements:
» There exists x with some property P(x).
— It is sufficient to find one element for which the property
holds.
» For all x some property P(x) holds.
— Proofs of ‘For all x some property P(x) holds’ must cover all
x and can be harder.
» Mathematical induction is a technique that can be applied to
prove the universal statements for sets of positive integers or
their associated sequences.
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Mathematical induction

» Used to prove statements of the form Vx P(x) where x € Z*

Mathematical induction proofs consists of two steps:
1) Basis: The proposition P(1) is true.
2) Inductive Step: The implication
P(n) — P(n+1), is true for all positive n.
» Therefore we conclude Vx P(x).

» Based on the well-ordering property: Every nonempty set of
nonnegative integers has a least element.

CS 441 Discrete mathematics for CS M. Hauskrecht

Mathematical induction

Example: Prove the sum of first n odd integers is n?.
ie.1+3+5+7+..+(2n-1)=n2 for all positive integers.
Proof:
e WhatisP(n)? P(n): 1+3+5+7+..+(2n-1)=n?
Basis Step Show P(1) is true
. Trivial: 1 = 12
Inductive Step Show if P(n) is true then P(n+1) is true for all n.
e Suppose P(n) is true, thatis 1 +3+5+7+ ...+ (2n-1)=n?
e ShowP(n+1): 1+3+5+7+..+(2n-1)+(2n+ 1) =(n+1) 2
follows:
e 1+3+5+7+..+(2n-1)+(2n+1) =
e+ @n+1) = (n+1)2
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