

Hash function		
An example of a hash function that maps integers large ones) to a subset of integers 0, 1, m-1 is	(including very s:	
$h(k) = k \mod m$		
Example: Assume we have a database of employes, each with a unique ID – a social security number that consists of 8 digits. We want to store the records in a smaller table with m entries. Using h(k) function we can map a social secutity number in the database of employes to indexes in the table.		
Assume: $h(k) = k \mod 111$		
Then:		
$h(064212848) = 064212848 \mod 111 = 14$		
$h(037149212) = 037149212 \mod 111 = 65$		
CS 441 Discrete mathematics for CS	M. Hauskrecht	

Binary Expansions Most computers represent integers and do arithmetic with binary (base 2) expansions of integers. In these expansions, the only digits used are 0 and 1. **Example**: What is the decimal expansion of the integer that has $(1 \ 0101 \ 1111)_2$ as its binary expansion? **Solution** $(1 \ 0101 \ 1111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 351$. **Example**: What is the decimal expansion of the integer that has $(11011)_2$ as its binary expansion? **Solution**: $(11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27$

Octal Expansions

The octal expansion (base 8) uses the digits $\{0,1,2,3,4,5,6,7\}$. **Example**: What is the decimal expansion of the number with octal expansion $(7016)_8$? **Solution**: $7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598$ **Example**: What is the decimal expansion of the number with octal expansion $(111)_8$? **Solution**: $1 \cdot 8^2 + 1 \cdot 8^1 + 1 \cdot 8^0 = 64 + 8 + 1 = 73$

M. Hauskrecht

Hexadecimal Expansions
• The hexadecimal expansion uses 16 digits: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.
 The letters A through F represent the decimal numbers 10 through 15.
Example : What is the decimal expansion of the number with hexadecimal expansion (2AE0B) ₁₆ ?
Solution:
$2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16^1 + 11 \cdot 16^0 = 175627$
Example : What is the decimal expansion of the number with hexadecimal expansion (E5) ₁₆ ?
Solution : $14 \cdot 16^1 + 5 \cdot 16^0 = 224 + 5 = 229$
M. Hauskrecht

Proofs		
Basic proof methods:		
• Direct, Indirect, Contradiction, By Cases, Equivalences		
Proof of quantified statements:		
• There exists x with some property P(x).		
 It is sufficient to find one element for which the property holds. 		
• For all x some property P(x) holds.		
 Proofs of 'For all x some property P(x) holds' must cover all x and can be harder. 		
• Mathematical induction is a technique that can be applied to prove the universal statements for sets of positive integers or their associated sequences.		
CS 441 Discrete mathematics for CS M. Hauskrecht		

Mathematical induction		
Example: Prove the sum of first n odd integers is n^2 .		
i.e. $1 + 3 + 5 + 7 + + (2n - 1) = n^2$ for all positive i	ntegers.	
Proof:		
• What is $P(n)$? $P(n)$: $1 + 3 + 5 + 7 + + (2n - 1) =$	$= n^2$	
Basis Step Show P(1) is true		
• Trivial: $1 = 1^2$		
Inductive Step Show if $P(n)$ is true then $P(n+1)$ is true f	or all n.	
• Suppose P(n) is true, that is $1 + 3 + 5 + 7 + + (2n - 1)$	$1) = n^2$	
• Show P(n+1): $1 + 3 + 5 + 7 + + (2n - 1) + (2n + 1)$ follows:	=(n+1) ²	
• $1+3+5+7++(2n-1)+(2n+1) =$		
n^2 + (2n+1) = (n+1)^2		
CS 441 Discrete mathematics for CS	M. Hauskrecht	