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Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

– Pseudorandom number generators

– Hash functions

– Cryptology
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Pseudorandom number generators

• Some problems we want to program need to simulate a 
random choice.  

• Examples: flip of a coin, roll of a dice

We need a way to generate random outcomes 

Basic problem: 

– assume outcomes: 0, 1, .. N

– generate the random sequences of outcomes

• Pseudorandom number generators let us generate sequences that 
look random

• Next: linear congruential method
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Pseudorandom number generators

Linear congruential method

• We choose 4 numbers:

• the modulus m, 

• multiplier a, 

• increment c, and 

• seed x0, 

such that 2 =< a < m, 0 =< c < m, 0 =< x0 < m.

• We generate a sequence of numbers x1, x2 x3 ... xn ... such that     
0 =<  xn <  m  for all n by successively using the congruence:

• xn+1 = (a.xn + c) mod m
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Pseudorandom number generators

Linear congruential method: 

• xn+1 = (a.xn + c) mod m

Example: 

• Assume : m=9,a=7,c=4, x0 = 3

• x1=  7*3+4 mod 9=25 mod 9 =7

• x2 = 53 mod 9 = 8

• x3 = 60 mod 9 = 6

• x4=  46 mod 9 =1

• x5 = 11 mod 9 =2

• x6 = 18 mod 9 =0

• ....
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Hash functions

A hash function is an algorithm that maps data of arbitrary length 
to data of a fixed length.

The values returned by a hash function are called hash values or 
hash codes. 

Example: 

John

Mary

Peter

Ann

Charles

00
01
02
03
04
..
19

Hash function
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Hash functions

• Problem: Given a large collection of records, how can we 
store and find a record quickly?

• Solution: Use a hash function calculate the location of the 
record based on the record’s ID. 

• Example: A common hash function is 

• h(k) = k mod n, 

where n is the number of available storage locations.

0 1 2 3 4 5 6 7 8

ID: 35 35 mod 9
= 8

ID: 21 21 mod 9
= 3
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Hash function

An example of a hash function that maps integers (including very 
large ones) to a subset of integers 0, 1, .. m-1 is:  

h(k) = k mod m

Example: Assume we have a database of employes, each with a 
unique ID – a social security number that consists of 8 digits. We 
want to store the records in a smaller table with m entries.  Using 
h(k) function we can map a social secutity number in the database 
of employes to indexes in the table. 

Assume: h(k) = k mod 111

Then: 

h(064212848)  = 064212848 mod 111 = 14

h(037149212) = 037149212 mod 111 = 65
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Hash functions

• Problem: two documents mapped to the same location

0 1 2 3 4 5 6 7 8

ID: 39 39 mod 9
= 3

ID: 21 21 mod 9
= 3
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Hash functions

• Solution 1: move the next available location

– Method is represented by a sequence of hash functions to 
try

0 1 2 3 4 5 6 7 8

ID: 39 39 mod 9
= 3

ID: 21 21 mod 9
= 3

h0(k) = k mod n
h1(k) = (k+1) mod n
…
hm(k) = (k+m) mod n
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Hash functions

• Solution 2: remember the exact location  in a secondary 
structure that is searched sequentially

0 1 2 3 4 5 6 7 8

ID: 39 39 mod 9
= 3

ID: 21 21 mod 9
= 3

ID: 21
Loc: 3

ID: 39
Loc: 4
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Cryptology

Encryption of messages.

• Ceasar cipher:  

• Shift  letters in the message by 3, last three letters mapped to the 
first 3 letters, e.g. A is shifted to D, X is shifted to A 

How to represent the idea of a shift by 3?

• There are 26 letters in the alphabet. Assign each of them a 
number from 0,1, 2, 3, .. 25 according to the alphabetical order. 

A B C D  E  F  G  H  I  J   K   L  M  N  O   P  Q  R   S  T   U  Y  V  X  W  Z

0  1  2  3  4   5  6   7  8  9 10  11 12  13 14 15 16 17 18 19 20 21 22 23 24 25

• The encryption of the letter with an index p is represented as:

• f(p) = (p + 3) mod 26 
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Cryptology

Encryption of messages using a shift by 3.

• The encryption of the letter with an index p is represented as:

• f(p) = (p + 3) mod 26

Coding of letters:
A B C D  E  F  G  H  I  J   K   L  M  N  O   P  Q  R   S  T   U  Y  V  X  W  Z

0  1  2  3  4   5  6   7  8  9 10  11 12  13 14 15 16 17 18 19 20 21 22 23 24 25

• Encrypt message:

– I  LIKE  DISCRETE  MATH

–
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Cryptology

Encryption of messages using a shift by 3.

• The encryption of the letter with an index p is represented as:

• f(p) = (p + 3) mod 26

Coding of letters:
A B C D  E  F  G  H  I  J   K   L  M  N  O   P  Q  R   S  T   U  Y  V  X  W  Z

0  1  2  3  4   5  6   7  8  9 10  11 12  13 14 15 16 17 18 19 20 21 22 23 24 25

• Encrypt message:

– I  LIKE  DISCRETE  MATH

– L  0LNH  GLYFUHVH  PDVK.
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Cryptology

How to decode the message ? 

• The encryption of the letter with an index p is represented as:

• f(p) = (p + 3) mod 26

Coding of letters:
A B C D  E  F  G  H  I  J   K   L  M  N  O   P  Q  R   S  T   U  Y  V  X  W  Z

0  1  2  3  4   5  6   7  8  9 10  11 12  13 14 15 16 17 18 19 20 21 22 23 24 25

• What method would you use to decode the message:

• f-1(p) = (p-3) mod 26
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Representations of Integers

• In the modern world, we use decimal, or base 10, notation to 
represent integers. For example when we write 965, we mean 
9·102 + 6·101 + 5·100 . 

• We  can represent numbers using any base b, where b is a 
positive integer greater than 1.

• The bases b = 2 (binary), b = 8 (octal) , and b= 16 
(hexadecimal) are important for computing and 
communications

• The ancient Mayans used base 20 and the ancient Babylonians 
used base 60.
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Base b Representations

• We can use positive integer b greater than 1 as a base

Theorem 1: Let b be a positive integer greater than 1. Then if n is 
a positive integer, it can be expressed uniquely in the form:

n = akbk + ak-1bk-1 + …. + a1b + a0

where k is a nonnegative integer, a0,a1,…. ak are nonnegative 
integers less than b, and ak≠ 0. The aj, j = 0,…,k are called the 
base-b digits of the representation.

• The representation of n given in Theorem 1 is called the base 
b expansion of n and is denoted by (akak-1….a1a0)b.

• We usually omit the  subscript 10 for base 10 expansions.
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Binary Expansions

Most computers represent integers and do arithmetic with 
binary  (base 2) expansions of integers. In these expansions, 
the only digits used are 0	and	1.

Example: What is the decimal expansion of  the integer that has 
(1	0101	1111)2 as its binary expansion?

Solution:

(1	0101	1111)2				 	1∙28	 	0∙27	 	1∙26	 	0∙25	 	1∙24	 	1∙23	

	1∙22	 	1∙21	 	1∙20	 351.	
Example: What is the decimal expansion of  the integer that has  

(11011)2 as its binary expansion?

Solution: (11011)2	 	1	∙24	 	1∙23	 	0∙22	 	1∙21	 	1∙20	 27
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Octal Expansions

The octal expansion (base 8) uses the digits {0,1,2,3,4,5,6,7}.

Example: What is the decimal expansion of the number with 
octal expansion (7016)8 ?

Solution: 7∙83	 	0∙82	 	1∙81	 	6∙80	 3598
Example:What is the decimal expansion of the number with 
octal expansion (111)8 ?

Solution: 1∙82	 	1∙81	 	1∙80	 	64	 	8	 	1	 	73
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Hexadecimal Expansions

• The hexadecimal expansion uses 16 digits: 
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. 

– The letters A through F represent the decimal numbers 10
through 15.

Example: What is the decimal expansion of the number with 
hexadecimal expansion (2AE0B)16 ?

Solution:

2∙164	 	10∙163	 	14∙162	 	0∙161	 	11∙160	 175627
Example: What is the decimal expansion of the number with 
hexadecimal expansion (E5)16 ?

Solution: 14∙161	 	5∙160	 	224	 	5	 	229
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Base Conversion

To construct the base b expansion of an integer n:

– Divide n by b to obtain a quotient and remainder.

n = bq0 + a0	 0	 	a0	 b

– The remainder, a0	,	is the rightmost digit in the base b
expansion of n. Next, divide q0 by b.

q0 = bq1 + a1 0	 	a1	 b

– The remainder, a1, is the second digit from the right in the 
base b expansion of n.

– Continue by successively dividing the quotients by b, 
obtaining the additional base b digits as the remainder. The 
process terminates when the quotient is 0.
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Base Conversion

Example: Find the octal expansion of (12345)10

Solution:  Successively dividing by 8 gives:

– 12345 = 8 · 1543 + 1
– 1543 = 8 · 192 + 7
– 192 = 8 · 24 + 0
– 24 = 8 · 3 + 0
– 3 = 8 · 0 + 3

The remainders are the digits from right to left  yielding  
(30071)8.
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Mathematical induction
& Recursion
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Proofs

Basic proof methods: 

• Direct, Indirect, Contradiction, By Cases, Equivalences

Proof of quantified statements:

• There exists x with some property P(x).

– It is sufficient to find one element for which the property 
holds.

• For all x some property P(x) holds.

– Proofs of ‘For all x some property P(x) holds’ must cover all 
x and can be harder.

• Mathematical induction is a technique that can be applied to 
prove the universal statements for sets of positive integers or 
their associated sequences. 
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Mathematical induction

• Used to prove statements of the form x P(x) where x  Z+

Mathematical induction proofs consists of two steps:

1) Basis: The proposition P(1) is true.

2) Inductive Step: The implication 

P(n)  P(n+1), is true for all positive n.

• Therefore  we conclude x P(x).

• Based on the well-ordering property: Every nonempty set of 
nonnegative integers has a least element.
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Mathematical induction

Example: Prove  the sum of first n odd integers is n2 .

i.e. 1 + 3 + 5 + 7 + ... + (2n - 1) = n2 for all positive integers.

Proof:

• What is P(n)?       P(n):   1 + 3 + 5 + 7 + ... + (2n - 1) = n2

Basis Step Show P(1) is true

• Trivial: 1    =     12

Inductive Step Show if P(n) is true then P(n+1) is true for all n.

• Suppose P(n) is true, that is  1 + 3 + 5 + 7 + ... + (2n - 1) = n2

• Show P(n+1):  1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1) =(n+1) 2

follows:

• 1 + 3 + 5 + 7 + ... + (2n - 1) + (2n + 1)  =

n2 +                 (2n+1)    =  (n+1)2


