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Integers and division

* Number theory is a branch of mathematics that explores
integers and their properties.

* Integers:
— Z integers{...,-2,-1,0,1,2, ...}
— Z* positive integers {1, 2, ...}

* Number theory has many applications within computer science,
including:
— Storage and organization of data
— Encryption
— Error correcting codes
— Random numbers generators
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Division

Definition: Assume 2 integers a and b, such that a =/ 0 (a is not
equal 0). We say that a divides b if there is an integer ¢ such
that b=ac. If adivides b we say that a is a factor of b and that
b is multiple of a.

 The fact that a divides b is denoted as a | b.

Examples:

* 4 |24 TrueorFalse ? True
* 4isa factor of 24
* 24 is a multiple of 4

* 3|7 TrueorFalse? False
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Primes

Definition: A positive integer p that greater than 1 and that is
divisible only by 1 and by itself (p) is called a prime.

Examples: 2,3,5,7, ...
1|2and2 |2, 1[3and3|3,etc
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The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

* Any positive integer greater than 1 can be expressed as a product
of prime numbers.

Examples:
o 12=2%2%3
e 21 =3%7

» Process of finding out factors of the product: factorization.
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Primes and composites

« How to determine whether the number is a prime or a
composite?

Let n be a number. Then in order to determine whether it is a

prime we can test:

« Approach 1: if any number x < n divides it. If yes it is a
composite. If we test all numbers X < n and do not find the
proper divisor then n is a prime.

« Approach 2: if any prime number x < n divides it. If yes it is a
composite. If we test all primes X < n and do not find a proper
divisor then n is a prime.

« Approach 3: if any prime number x <+/n divides it. If yes it is
a composite. If we test all primes X <\/n and do not find a proper
divisor then n is a prime.
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Division

Let a be an integer and d a positive integer. Then there are unique
integers, q and r, with 0 <=r < d, such that

a=dqg+r.

Definitions: Example: a=14,d=3
e ais called the dividend, 14=3%4+2

. . 14/3=3.666
e d lled the divisor

15 caried the HIVROL, 14 div 3 =4
+ qis called the quotient and 14 mod 3 = 2
 rthe remainder of the division.
Relations:
« g=adivd, r=amodd
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Greatest common divisor

A systematic way to find the gcd using factorization:

e Let a:plal p2a2 p3a3 L pkak and b= plbl p2b2 p3b3 L pkbk
. gcd(a,b)= ) min(al,bl) P, min(a2,b2) s min(a3,b3) e Pr min(ak,bk)

Examples:

* gcd(24,36) =7

o 24 =2%2%*2%3=23"3
o 36=2%2%3%3=22"32
» gcd(24,36) =
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Greatest common divisor

A systematic way to find the gcd using factorization:

» Leta=p," p,” p;* ... p** and b=p,"! p," p;> ... p, ¥
. gcd(a,b)= P min(al,bl) P, min(a2,b2) s min(a3,b3) e Pr min(ak,bk)

Examples:

+ gcd(24,36) ="

o 24 =2%%2%3=23"3

o 36=2%2%3%3=22"32

« gcd(24,36) =223 =12
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as Ilcm(a,b).

Example:
« WhatisIcm(12,9) =?

* Give me a common multiple: ...
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as Ilcm(a,b).

Example:

» What is Icm(12,9) =?

* Give me a common multiple: ... 12*9=108
« Can we find a smaller number?
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as Ilcm(a,b).

Example:

« WhatisIcm(12,9) =?

* Give me a common multiple: ... 12*9=108
+ Can we find a smaller number?

* Yes. Try 36. Both 12 and 9 cleanly divide 36.
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Least common multiple

A systematic way to find the lcm using factorization:

e Let a:plal p2a2 p3a3 . pkak and b= plbl p2b2 p3b3 . pkbk
. lcm(a,b): P max(al,bl) o max(a2,b2) D; max(a3,b3) e Px max(ak,bk)

Example:

» What is Icm(12,9) =?

o 12 =2%2%3=02%3

¢ 0=3%3=32

« lcm(12,9)=22*32"4*9=236
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Euclid algorithm

Finding the greatest common divisor requires factorization

. a:plal p2a2 p3a3 L pkak’ b= plbl p2b2 p3b3 L pkbk
. gcd(a,b)= ) min(al,bl) P, min(a2,b2) s min(a3,b3) e Pr min(ak,bk)

 Factorization can be cumbersome and time consuming since we
need to find all factors of the two integers that can be very large.

* Luckily a more efficient method for computing the ged exists:
« Itis called Euclid’s algorithm

— the method is known from ancient times and named after
Greek mathematician Euclid.
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
* First divide the larger number (287) by the smaller one (91)
* We get 287 =3*91 +14

(1) Any divisor of 91 and 287 must also be a divisor of 14:
* 287- 3*91 =14
* Why? [ak—cbk]=r > (acb)k=r -> (a-cb)=r/k (mustbe
an integer and thus k divides r ]
(2) Any divisor of 91 and 14 must also be a divisor of 287

 Why? 287=3bk+dk > 287=k(3b+d) > 287/k=(3b
+d) € 287/k must be an integer

» Butthen gcd(287.,91) = gcd(91,14)
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Euclid algorithm
« We know that gcd(287,91) = gcd(91,14)

* But the same trick can be applied again:
» gcd(91,14)
*91=14.6+7
 and therefore
— ged(91,14)=gcd(14,7)

* And one more time:
— ged(14,7)=7
— trivial
« The result: gcd(287,91) = gcd(91,14)=gcd(14,7) =7
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Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

. cd(666,558) 666=1*558 + 108
= gcd(558,108) 558=5*108 + 18
= gcd(108,18) 108=6*18 + 0
=18
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Euclid algorithm

Example 2:
* Find the greatest common divisor of 286 & 503:

. gcd(503,286) 503=
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Euclid algorithm
Example 2:

* Find the greatest common divisor of 286 & 503:

. gcd(503,286) 503=1%286 + 217
=gcd(286, 217) 286=
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Euclid algorithm

Example 2:
* Find the greatest common divisor of 286 & 503:

* 2cd(503,286) 503=1%286 + 217
=gcd(286, 217) 286=1*217 + 69
=gcd(217, 69) 217=3*%69 + 10
= gcd(69,10) 69 =6*10 +9

=gcd(10,9) 10=1*9 + 1
=gcd(9,1)=1
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Modular arithmetic

 In computer science we often care about the remainder of an
integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24
hour clock after 50 hours?

Answer: the result is 2am
How did we arrive to the result:

* Divide 50 with 24. The reminder is the time on the 24 hour
clock.

— 50=2%24+2
— so the result is 2am.

CS 441 Discrete mathematics for CS M. Hauskrecht

Congruency

Definition: If a and b are integers and m is a positive integer, then
a is congruent to b modulo n if m divides a-b. We use the
notation @ = b (mod m) to denote the congruency. If a and b are
not congruent we write a # b (mod m).

Example:
* Determine if 17 is congruent to 5 modulo 6?
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Congruency

Theorem. Ifaand b are integers and m a positive integer. Then
a=b (mod m) if and only if a mod m =b mod b.

Example:

* Determine if 17 is congruent to 5 modulo 6?
* 17mod 6=5

* S5mod6=5

» Thus 17 is congruent to 5 modulo 6.
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Congruencies

Theorem 1. Let m be a positive integer. The integers a and b are

congruent modulo m if and only if there exists an integer k such
that a=b+mk.

Theorem?2 . Let m be a positive integer. If a=b (mod m) and c=d
(mod m) then:

a+c = b+d (mod m) and ac=bd (mod m).
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Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:
— Pseudorandom number generators
— Hash functions
— Cryptology
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Pseudorandom number generators

« Some problems we want to program need to simulate a
random choice.

« Examples: flip of a coin, roll of a dice

We need a way to generate random outcomes
Basic problem:
— assume outcomes: 0, 1, .. N

— generate the random sequences of outcomes

» Pseudorandom number generators let us generate sequences that
look random

* Next: linear congruential method
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Pseudorandom number generators

Linear congruential method
* We choose 4 numbers:
¢ the modulus m,
» multiplier a,
* increment c, and
* seed Xx,,
such that2 =<a<m, 0 =<c <m, 0 =<x,<m.

+ We generate a sequence of numbers X, X, X3 ... X, ... such that
0=< x, < m for all n by successively using the congruence:

* X, = (ax,+c)mod m
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Pseudorandom number generators

Linear congruential method:

* X, = (a.x, + ¢) mod m
Example:
* Assume : m=9,a=7,c=4, X, =3

* X,= 7*3+4 mod 9=25 mod 9 =7
* X,=53mod9 =38

* X;=60mod9=06

* X,= 46 mod 9 =1

* Xs=11mod9 =2

* Xe=18mod 9 =0
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Hash functions

A hash function is an algorithm that maps data of arbitrary length
to data of a fixed length.

The values returned by a hash function are called hash values or
hash codes.

Example:
Hash function

John 00

> 01

Mary 02
Peter 03
Ann - 04
Charles 19
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Hash function

An example of a hash function that maps integers (including very
large ones) to a subset of integers 0, 1, .. m-1 is:

h(k) =k mod m

Example: Assume we have a database of employes, each with a
unique ID — a social security number that consists of 8 digits. We
want to store the records in a smaller table with m entries. Using
h(k) function we can map a social secutity number in the database
of employes to indexes in the table.

Assume: h(k) =k mod 111

Then:

h(064212848) =064212848 mod 111 = 14

h(037149212) = 037149212 mod 111 = 65
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