CS 441 Discrete Mathematics for CS
 Lecture 13

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Integers and division

- Number theory is a branch of mathematics that explores integers and their properties.
- Integers:
-Z integers $\{\ldots,-\mathbf{2 , - 1}, \mathbf{0}, 1,2, \ldots\}$
$-Z^{+}$positive integers $\{1,2, \ldots\}$
- Number theory has many applications within computer science, including:
- Storage and organization of data
- Encryption
- Error correcting codes
- Random numbers generators

Division

Definition: Assume 2 integers a and b , such that $\mathrm{a}=/ 0$ (a is not equal 0). We say that a divides \mathbf{b} if there is an integer \mathbf{c} such that $b=a c$. If a divides b we say that \mathbf{a} is a factor $\mathbf{~ o f ~} \mathbf{b}$ and that b is multiple of \mathbf{a}.

- The fact that a divides b is denoted as $\mathbf{a} \mid \mathbf{b}$.

Examples:

- 4 | 24 True or False? True
- 4 is a factor of 24
- 24 is a multiple of 4
- $3 \mid 7$ True or False? False

Primes

Definition: A positive integer p that greater than 1 and that is divisible only by 1 and by itself (p) is called a prime.

Examples: 2, 3, 5, 7, \ldots
$1 \mid 2$ and $2|2,1| 3$ and $3 \mid 3$, etc

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

- Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- $12=2 * 2 * 3$
- $21=3 * 7$
- Process of finding out factors of the product: factorization.

Primes and composites

- How to determine whether the number is a prime or a composite?
Let n be a number. Then in order to determine whether it is a prime we can test:
- Approach 1: if any number $x<n$ divides it. If yes it is a composite. If we test all numbers $x<n$ and do not find the proper divisor then n is a prime.
- Approach 2: if any prime number $\mathrm{x}<\mathrm{n}$ divides it. If yes it is a composite. If we test all primes $x<n$ and do not find a proper divisor then n is a prime.
- Approach 3: if any prime number $x<\sqrt{n}$ divides it. If yes it is a composite. If we test all primes $x<\sqrt{n}$ and do not find a proper divisor then n is a prime.

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0<=r<d$, such that

$$
\mathbf{a}=\mathbf{d q}+\mathbf{r} .
$$

Definitions:

- a is called the dividend,
- d is called the divisor,
- q is called the quotient and

Example: $\mathrm{a}=14, \mathrm{~d}=3$
$14=3 * 4+2$
$14 / 3=3.666$
$14 \operatorname{div} 3=4$
$14 \bmod 3=2$

- r the remainder of the division.

Relations:

- $\mathbf{q}=\mathbf{a d i v} \mathbf{d}, r=a \bmod d$

Greatest common divisor

A systematic way to find the gcd using factorization:

- Let $\mathrm{a}=\mathrm{p}_{1}{ }^{\mathrm{a} 1} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \mathrm{p}_{3}^{\mathrm{a} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{ak}}$ and $\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{b} 1} \mathrm{p}_{2}{ }^{\mathrm{b} 2} \mathrm{p}_{3}{ }^{\mathrm{b} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{bk}}$
- $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{p}_{1}{ }^{\min (\mathrm{a} 1, \mathrm{~b} 1)} \mathrm{p}_{2}{ }^{\min (\mathrm{a} 2, \mathrm{~b} 2)} \mathrm{p}_{3}^{\min (\mathrm{a} 3, \mathrm{~b} 3)} \ldots \mathrm{p}_{\mathrm{k}}^{\min (\mathrm{a}, \mathrm{bk})}$

Examples:

- $\operatorname{gcd}(24,36)=$?
- $24=2 * 2 * 2 * 3=2^{3 *} 3$
- $36=2 * 2 * 3 * 3=2^{2 *} 3^{2}$
- $\operatorname{gcd}(24,36)=$

Greatest common divisor

A systematic way to find the gcd using factorization:

- Let $\mathrm{a}=\mathrm{p}_{1}{ }^{\mathrm{al}} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \mathrm{p}_{3}^{\mathrm{a} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{ak}}$ and $\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{b} 1} \mathrm{p}_{2}{ }^{\mathrm{b} 2} \mathrm{p}_{3}{ }^{\mathrm{b} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{bk}}$
- $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{p}_{1}{ }^{\min (a 1, \mathrm{~b} 1)} \mathrm{p}_{2}{ }^{\min (a 2, \mathrm{~b} 2)} \mathrm{p}_{3}{ }^{\min (\mathrm{a} 3, \mathrm{~b} 3)} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\min (a k, b k)}$

Examples:

- $\operatorname{gcd}(24,36)=$?
- $24=2 * 2 * 2 * 3=2^{3 *} 3$
- $36=2 * 2 * 3 * 3=2^{2 *} 3^{2}$
- $\operatorname{gcd}(24,36)=2^{2 *} 3=12$

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The least common multiple is denoted as $\operatorname{lcm}(\mathbf{a}, \mathbf{b})$.

Example:

- What is $\operatorname{lcm}(12,9)=$?
- Give me a common multiple: ...

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The least common multiple is denoted as $\operatorname{lcm}(\mathbf{a}, \mathbf{b})$.

Example:

- What is $\operatorname{lcm}(12,9)=$?
- Give me a common multiple: ... $12 * 9=108$
- Can we find a smaller number?

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The least common multiple is denoted as $\operatorname{lcm}(\mathbf{a}, \mathbf{b})$.

Example:

- What is $\operatorname{lcm}(12,9)=$?
- Give me a common multiple: ... $12 * 9=108$
- Can we find a smaller number?
- Yes. Try 36. Both 12 and 9 cleanly divide 36.

Least common multiple

A systematic way to find the lcm using factorization:

- Let $\mathrm{a}=\mathrm{p}_{1}{ }^{\mathrm{a} 1} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \mathrm{p}_{3}{ }^{\mathrm{a} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{ak}}$ and $\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{b} 1} \mathrm{p}_{2}{ }^{\mathrm{b} 2} \mathrm{p}_{3}{ }^{\mathrm{b} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{bk}}$
- $\operatorname{lcm}(\mathrm{a}, \mathrm{b})=\mathrm{p}_{1}{ }^{\max (a 1, b 1)} \mathrm{p}_{2}{ }^{\max (a 2, b 2)} \mathrm{p}_{3}{ }^{\max (a 3, b 3)} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\max (\mathrm{ak}, b k)}$

Example:

- What is $\operatorname{lcm}(12,9)=$?
- $12=2 * 2 * 3=2 * 3$
- $9=3 * 3=3^{2}$
- $\boldsymbol{\operatorname { l c m }}(\mathbf{1 2 , 9})=2^{2} * 3^{2}=4 * 9=36$

Euclid algorithm

Finding the greatest common divisor requires factorization

- $\mathrm{a}=\mathrm{p}_{1}{ }^{\mathrm{a} 1} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \mathrm{p}_{3}{ }^{\mathrm{a} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{ak}}, \mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{b} 1} \mathrm{p}_{2}{ }^{\mathrm{b} 2} \mathrm{p}_{3}{ }^{\mathrm{b} 3} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{bk}}$
- $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{p}_{1}{ }^{\min (\mathrm{a} 1, \mathrm{~b} 1)} \mathrm{p}_{2}{ }^{\min (\mathrm{a} 2, \mathrm{~b} 2)} \mathrm{p}_{3}^{\min (\mathrm{a} 3, \mathrm{~b} 3)} \ldots \mathrm{p}_{\mathrm{k}}^{\min (\mathrm{a}, \mathrm{bk})}$
- Factorization can be cumbersome and time consuming since we need to find all factors of the two integers that can be very large.
- Luckily a more efficient method for computing the gcd exists:
- It is called Euclid's algorithm
- the method is known from ancient times and named after Greek mathematician Euclid.

Euclid algorithm

Assume two numbers 287 and 91. We want $\operatorname{gcd}(287,91)$.

- First divide the larger number (287) by the smaller one (91)
- We get $287=3 * 91+14$
(1) Any divisor of 91 and 287 must also be a divisor of 14:
- 287-3*91 = 14
- Why? [$\mathrm{ak}-\mathrm{cbk}]=\mathrm{r} \rightarrow(\mathrm{a}-\mathrm{cb}) \mathrm{k}=\mathrm{r} \rightarrow(\mathrm{a}-\mathrm{cb})=\mathrm{r} / \mathrm{k}$ (must be an integer and thus k divides r]
(2) Any divisor of 91 and 14 must also be a divisor of 287
- Why? $287=3 \mathrm{bk}+\mathrm{dk} \rightarrow 287=\mathrm{k}(3 \mathrm{~b}+\mathrm{d}) \rightarrow 287 / \mathrm{k}=(3 \mathrm{~b}$ $+\mathrm{d}) \leftarrow 287 / \mathrm{k}$ must be an integer
- But then $\operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$

Euclid algorithm

- We know that $\operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$
- But the same trick can be applied again:
- $\operatorname{gcd}(91,14)$
- $91=14.6+7$
- and therefore
$-\operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)$
- And one more time:
$-\operatorname{gcd}(14,7)=7$
- trivial
- The result: $\operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)=7$

Euclid algorithm

Example 1:

- Find the greatest common divisor of 666 \& 558
- $\operatorname{gcd}(666,558)$
$=\operatorname{gcd}(558,108)$
$666=1 * 558+108$
$=\operatorname{gcd}(108,18)$
$108+18$
$=18$

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 \& 503:
- $\operatorname{gcd}(503,286)$
$503=$

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 \& 503:
- $\operatorname{gcd}(503,286)$ $=\operatorname{gcd}(286,217)$
$503=1 * 286+217$
286=

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 \& 503:
- $\operatorname{gcd}(503,286)$
$=\operatorname{gcd}(286,217)$
$=\operatorname{gcd}(217,69)$
$=\operatorname{gcd}(69,10)$
$=\operatorname{gcd}(10,9)$
$=\operatorname{gcd}(9,1)=1$
$503=1 * 286+217$
$286=1 * 217+69$
$217=3 * 69+10$
$69=6 * 10+9$
$10=1 * 9+1$

Modular arithmetic

- In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: the result is 2 am
How did we arrive to the result:

- Divide 50 with 24 . The reminder is the time on the 24 hour clock.
$-50=2 * 24+2$
- so the result is 2 am .

Congruency

Definition: If a and b are integers and m is a positive integer, then \mathbf{a} is congruent to \mathbf{b} modulo \mathbf{n} if m divides $a-b$. We use the notation $\mathbf{a}=\mathbf{b}(\bmod \mathbf{m})$ to denote the congruency. If a and b are not congruent we write $\mathrm{a} \neq \mathrm{b}(\bmod m)$.

Example:

- Determine if 17 is congruent to 5 modulo 6 ?

Congruency

Theorem. If a and b are integers and m a positive integer. Then $a=b(\bmod m)$ if and only if $a \bmod m=b \bmod b$.

Example:

- Determine if 17 is congruent to 5 modulo 6 ?
- $17 \bmod 6=5$
- $5 \bmod 6=5$
- Thus 17 is congruent to 5 modulo 6 .

Congruencies

Theorem 1. Let m be a positive integer. The integers a and b are congruent modulo m if and only if there exists an integer k such that $\mathrm{a}=\mathrm{b}+\mathrm{mk}$.

Theorem2 . Let m be a positive integer. If $\mathrm{a}=\mathrm{b}(\bmod \mathrm{m})$ and $\mathrm{c}=\mathrm{d}$ $(\bmod m)$ then:

$$
a+c=b+d(\bmod m) \text { and } a c=b d(\bmod m) .
$$

Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

- Pseudorandom number generators
- Hash functions
- Cryptology

Pseudorandom number generators

- Some problems we want to program need to simulate a random choice.
- Examples: flip of a coin, roll of a dice

We need a way to generate random outcomes
Basic problem:

- assume outcomes: $0,1, . . \mathrm{N}$
- generate the random sequences of outcomes
- Pseudorandom number generators let us generate sequences that look random
- Next: linear congruential method

Pseudorandom number generators

Linear congruential method

- We choose 4 numbers:
- the modulus m,
- multiplier a,
- increment c, and
- $\operatorname{seed} \mathrm{x}_{0}$,
such that $2=<\mathrm{a}<\mathrm{m}, 0=<\mathrm{c}<\mathrm{m}, 0=<\mathrm{x}_{0}<\mathrm{m}$.
- We generate a sequence of numbers $x_{1,} x_{2} x_{3} \ldots x_{n} \ldots$ such that $0=<x_{n}<m$ for all n by successively using the congruence:
- $\mathrm{x}_{\mathrm{n}+1}=\left(\mathrm{a} \cdot \mathrm{x}_{\mathrm{n}}+\mathrm{c}\right) \bmod m$

Pseudorandom number generators

Linear congruential method:

- $\mathrm{X}_{\mathrm{n}+1}=\left(\mathrm{a} \cdot \mathrm{x}_{\mathrm{n}}+\mathrm{c}\right) \bmod \mathrm{m}$

Example:

- Assume : $\mathrm{m}=9, \mathrm{a}=7, \mathrm{c}=4, \mathrm{x}_{0}=3$
- $x_{1}=7 * 3+4 \bmod 9=25 \bmod 9=7$
- $x_{2}=53 \bmod 9=8$
- $x_{3}=60 \bmod 9=6$
- $x_{4}=46 \bmod 9=1$
- $\mathrm{x}_{5}=11 \bmod 9=2$
- $\mathrm{x}_{6}=18 \bmod 9=0$
-

Hash functions

A hash function is an algorithm that maps data of arbitrary length to data of a fixed length.
The values returned by a hash function are called hash values or hash codes.
Example:

Hash function

An example of a hash function that maps integers (including very large ones) to a subset of integers $0,1, . . \mathrm{m}-1$ is:

$$
h(k)=k \bmod m
$$

Example: Assume we have a database of employes, each with a unique ID - a social security number that consists of 8 digits. We want to store the records in a smaller table with m entries. Using $h(k)$ function we can map a social secutity number in the database of employes to indexes in the table.
Assume: $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 111$
Then:
$\mathrm{h}(064212848)=064212848 \bmod 111=14$
$\mathrm{h}(037149212)=037149212 \bmod 111=65$

