CS 441 Discrete Mathematics for CS

Lecture 12

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Symmetric matrix

Definition:

- A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{\mathrm{T}}$.
- Thus $\mathbf{A}=\left[a_{i j}\right]$ is symmetric if $a_{i j}=a_{j i}$ for i and j with $1 \leq i \leq n$ and $1 \leq j \leq n$.
- Example:

1	1	0	0
1	0	1	0
0	1	1	1
0	0	1	0

- Is it a symmetric matrix? yes

Zero-one matrix

Definition:

- A matrix with entries that are either 0 or 1 is called a zero-one matrix.
- Algorithms operating on discrete structures represented by zeroone matrices are based on Boolean arithmetic defined by the Boolean operations and and or :

$$
\begin{array}{ll}
b_{1} \wedge b_{2}= \begin{cases}1 & \text { if } b_{1}=b_{2}=1 \\
0 & \text { otherwise }\end{cases} & \text { and } \\
b_{1} \vee b_{2}= \begin{cases}1 & \text { if } b_{1}=1 \text { or } b_{2}=1 \\
0 & \text { otherwise }\end{cases} & \text { or }
\end{array}
$$

Join and meet of matrices

Definition: Let A and B be two matrices:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

- The join of A and B is:

$$
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

- The meet of A and B is

$$
\mathbf{A} \wedge \mathbf{B}=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

CS 441 Discrete Mathematics for CS
 Lecture 12

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Integers and division

- Number theory is a branch of mathematics that explores integers and their properties.
- Integers:
-Z integers $\{\ldots,-\mathbf{2 , - 1}, \mathbf{0}, 1,2, \ldots\}$
$-Z^{+}$positive integers $\{1,2, \ldots\}$
- Number theory has many applications within computer science, including:
- Indexing - Storage and organization of data
- Encryption
- Error correcting codes
- Random numbers generators

Division

Definition: Assume 2 integers a and b , such that $\mathrm{a}=/ 0$ (a is not equal 0). We say that a divides \mathbf{b} if there is an integer \mathbf{c} such that $b=a c$. If a divides b we say that \mathbf{a} is a factor $\mathbf{~ o f ~} \mathbf{b}$ and that b is multiple of \mathbf{a}.

- The fact that a divides b is denoted as $\mathbf{a} \mid \mathbf{b}$.

Examples:

- 4 | 24 True or False? True
- 4 is a factor of 24
- 24 is a multiple of 4
- 3 | 7 True or False? False

Divisibility

All integers divisible by $\mathbf{d}>\mathbf{0}$ can be enumerated as:

- .., -kd, ..., $-2 d,-d, 0, d, 2 d, \ldots, k d, \ldots$
- Question:

Let n and d be two positive integers. How many positive integers not exceeding n are divisible by d ?

- $0<k d \leq n$
- Answer:

Count the number of integers $k d$ that are less than n. What is the number of integers k such that $0<k d \leq n$?
$0<k d \leq n \quad \rightarrow 0<k \leq n / d$. Therefore, there are $\left|_n / d _\right|$ positive integers not exceeding n that are divisible by d .

Divisibility

Properties:

- Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be integers. Then the following hold:

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$
2. if $a \mid b$ then $a \mid b c$ for all integers c
3. if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof of 1: if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$ then $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$

- from the definition of divisibility we get:
- $b=a u$ and $c=a v \quad$ where u, v are two integers. Then
- $(b+c)=a u+a v=a(u+v)$
- Thus a divides $\mathbf{b}+\mathbf{c}$.

Divisibility

Properties:

- Let a, b, c be integers. Then the following hold:

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$
2. if $\mathrm{a} \mid \mathrm{b}$ then $\mathrm{a} \mid \mathrm{bc}$ for all integers c
3. if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof of 2: if $\mathrm{a} \mid \mathrm{b}$ then $\mathrm{a} \mid \mathrm{bc}$ for all integers c

- If $a \mid b$, then there is some integer u such that $b=a u$.
- Multiplying both sides by c gives us $\mathrm{bc}=\mathrm{auc}$, so by definition, $\mathrm{a} \mid \mathrm{bc}$.
- Thus a divides bc.

Primes

Definition: A positive integer p that is greater than 1 and that is divisible only by 1 and by itself (p) is called a prime.

Examples: 2, 3, 5, 7, \ldots
$1 \mid 2$ and $2|2, \quad 1| 3$ and $3 \mid 3$, etc

Primes

Definition: A positive integer p that is greater than 1 and that is divisible only by 1 and by itself (p) is called a prime.

Examples: 2, 3, 5, 7, \ldots
$1 \mid 2$ and $2|2, \quad 1| 3$ and $3 \mid 3$, etc

What is the next prime after 7 ?

- 11

Next?

- 13

Primes

Definition: A positive integer that is greater than 1 and is not a prime is called a composite.

Examples: 4, 6, 8, 9, ...
Why?
$2 \mid 4$
Why 6 is a composite?

Primes

Definition: A positive integer that is greater than 1 and is not a prime is called a composite.

Examples: 4, 6, 8, 9, \ldots
Why?
$2 \mid 4$
$3 \mid 6$ or $2 \mid 6$
2| 8 or $4 \mid 8$
3|9

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

- Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- $12=$?

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

- Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- $12=2 * 2 * 3$
- $21=3 * 7$
- Process of finding out factors of the product: factorization.

Primes and composites

Factorization of composites to primes:

- $100=2 * 2 * 5 * 5=2 * 5^{2}$
- $99=3 * 3 * 11=3^{2} * 11$

Important question:

- How to determine whether the number is a prime or a composite?

Primes and composites

- How to determine whether the number is a prime or a composite?

Simple approach (1):

- Let n be a number. To determine whether it is a prime we can test if any number $x<n$ divides it. If yes it is a composite. If we test all numbers $x<n$ and do not find the proper divisor then n is a prime.

Primes and composites

- How to determine whether the number is a prime or a composite?

Simple approach (1):

- Let n be a number. To determine whether it is a prime we can test if any number $x<n$ divides it. If yes it is a composite. If we test all numbers $x<n$ and do not find the proper divisor then n is a prime.
- Example:
- Assume we want to check if 17 is a prime?
- The approach would require us to check:
- 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Primes and composites

- Example approach 1:
- Assume we want to check if 17 is a prime?
- The approach would require us to check:
- $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$
- Is this the best we can do?
- No. The problem here is that we try to test all the numbers. But this is not necessary.
- Idea: Every composite factorizes to a product of primes. So it is sufficient to test only the primes $x<n$ to determine the primality of n.

Primes and composites

- How to determine whether the number is a prime or a composite?
Approach 2:
- Let n be a number. To determine whether it is a prime we can test if any prime number $\mathrm{x}<\mathrm{n}$ divides it. If yes it is a composite. If we test all primes $x<n$ and do not find a proper divisor then n is a prime.

Primes and composites

- How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number $\mathrm{x}<\mathrm{n}$ divides it. If yes it is a composite. If we test all primes $x<n$ and do not find a proper divisor then n is a prime.
- Example: Is 31 a prime?
- Check if 2,3,5,7,11,13,17,23,29 divide it
- It is a prime !!

Primes and composites

Example approach 2:

Is 91 a prime number?

- Easy primes 2,3,5,7,11,13,17,19 ..
- But how many primes are there that are smaller than 91 ?

Caveat:

- If n is relatively small the test is good because we can enumerate (memorize) all small primes
- But if n is large there can be larger not obvious primes

Primes and composites

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n}.

Primes and composites

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n}.

Proof:

- If n is composite, then it has a positive integer factor a such that $l<a<n$ by definition. This means that $n=a b$, where b is an integer greater than 1 .
- Assume $a>\sqrt{ } n$ and $b>\sqrt{n}$. Then $a b>\sqrt{n} \sqrt{ } n=n$, which is a contradiction. So either $a \leq \sqrt{ } n$ or $b \leq \sqrt{ } n$.
- Thus, n has a divisor less than $\sqrt{ } n$.
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than $\sqrt{ } n$.

Primes and composites

Theorem: If n is a composite that n has a prime divisor less than or equal to \sqrt{n}.

Approach 3:

- Let n be a number. To determine whether it is a prime we can test if any prime number $\mathrm{x}<\sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101}=10 . \mathrm{xxx}$ are: $2,3,5,7$
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?

- Primes smaller than $\sqrt{91}$ are: $2,3,5,7$
- 91 is divisible by 7
- Thus 91 is a composite

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Proof by Euclid.

- Proof by contradiction:
- Assume there is a finite number of primes: $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{n}}$
- Let $\mathrm{Q}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}+1$ be a number.
- None of the numbers $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ divides the number Q .
- This is a contradiction since we assumed that we have listed all primes.

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0<=r<d$, such that

$$
\mathbf{a}=\mathbf{d q}+\mathbf{r} .
$$

Definitions:

- a is called the dividend,
- d is called the divisor,
- q is called the quotient and

Example: $\mathrm{a}=14, \mathrm{~d}=3$
$14=3 * 4+2$
$14 / 3=3.666$
$14 \operatorname{div} 3=4$
$14 \bmod 3=2$

- r the remainder of the division.

Relations:

- $\mathbf{q}=\mathbf{a d i v} \mathbf{d}, r=a \bmod d$

Greatest common divisor

Definition: Let a and b are integers, not both 0 . Then the largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor is denoted as $\operatorname{gcd}(a, b)$.

Examples:

- $\operatorname{gcd}(24,36)=$?
- Check $2,3,4,6,12 \operatorname{gcd}(24,36)=12$
- $\operatorname{gcd}(11,23)=$?

