

















| Countable sets                                                       |                 |  |
|----------------------------------------------------------------------|-----------------|--|
| Example:                                                             |                 |  |
| • Assume A = {0, 2, 4, 6, } set of even numbers. Is it countable?    |                 |  |
| • Using the definition: Is there a bijective function f: $Z^+$       | $\rightarrow A$ |  |
| $Z + = \{1, 2, 3, 4, \ldots\}$                                       |                 |  |
| • Define a function f: $x \rightarrow 2x - 2$ (an arithmetic progres | sion)           |  |
| • $1 \rightarrow 2(1) - 2 = 0$                                       |                 |  |
| • $2 \rightarrow 2(2) - 2 = 2$                                       |                 |  |
| • $3 \rightarrow 2(3) - 2 = 4 \dots$                                 |                 |  |
| • one-to-one (why?)                                                  |                 |  |
|                                                                      |                 |  |
|                                                                      |                 |  |
| CS 441 Discrete mathematics for CS                                   | M. Hauskrecht   |  |



| Countable sets                                     |               |
|----------------------------------------------------|---------------|
| Theorem:                                           |               |
| • The set of integers Z is countable.              |               |
| Solution:                                          |               |
| Can list a sequence:                               |               |
| 0, 1, -1, 2, -2, 3, -3,                            |               |
| Or can define a bijection from $Z^+$ to <b>Z</b> : |               |
| - When <i>n</i> is even: $f(n) = n/2$              |               |
| - When <i>n</i> is odd: $f(n) = -(n-1)/2$          |               |
|                                                    |               |
|                                                    |               |
|                                                    |               |
| CS 441 Discrete mathematics for CS                 | M. Hauskrecht |







| Real numbers are uncountable                                                               |               |  |
|--------------------------------------------------------------------------------------------|---------------|--|
| Proof cont.                                                                                |               |  |
| 3) Want to show that not all reals in the interval between 0 and 1 are in this list.       |               |  |
| • Form a new number called                                                                 |               |  |
| $- r = 0.d_1d_2d_3d_4$ where                                                               |               |  |
| $d_i = -\begin{cases} 2, \text{ if } d_{ii} \neq 2\\ 3 \text{ if } d_{ii} = 2 \end{cases}$ |               |  |
| • Example: suppose $r1 = 0.75243$                                                          | d1 = 2        |  |
| r2 = 0.524310                                                                              | d2 = 3        |  |
| r3 = 0.131257                                                                              | d3 = 2        |  |
| r4 = 0.9363633                                                                             | d4 = 2        |  |
|                                                                                            |               |  |
| rt = 0.23222222                                                                            | dt = 3        |  |
| CS 441 Discrete mathematics for CS                                                         | M. Hauskrecht |  |







| Matrices                                                                                                                                          |                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Definitions:                                                                                                                                      |                      |  |
| • A matrix is a rectangular array of numbers.                                                                                                     |                      |  |
| • A matrix with <i>m</i> rows and <i>n</i> columns is called an <i>m</i> x matrix.                                                                | : <b>n</b>           |  |
| <b>Note:</b> The plural of matrix is <i>matrices</i> . <b>Definitions:</b>                                                                        |                      |  |
| • A matrix with the same number of rows as columns is called a <i>square matrix</i> .                                                             |                      |  |
| • Two matrices are <i>equal</i> if they have the same number of and the same number of columns and the corresponding in every position are equal. | of rows<br>g entries |  |
| CS 441 Discrete mathematics for CS                                                                                                                | M. Hauskrecht        |  |



| Matrix addition                                                                                                                                                                                                                                                                                     |                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| <b>Definition:</b><br>Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \ge n$ matrices. The sum of denoted by $\mathbf{A} + \mathbf{B}$ , is the $m \ge n$ matrix that has $a_{ij} + b_{ij}$ ( <i>i,j</i> )th element. In other words, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$ . | ` <b>A</b> and <b>B</b> ,<br>p <sub>ij</sub> as its |  |
| Example:<br>$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}$                                                                     | ]                                                   |  |
| <b>Note:</b> matrices of different sizes can not be added.                                                                                                                                                                                                                                          |                                                     |  |























