CS 441 Discrete Mathematics for CS
 Lecture 10

Sequences and summations

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Sequences

Definition: A sequence is a function from a subset of the set of integers (typically the set $\{0,1,2, \ldots\}$ or the set $\{1,2,3, \ldots\}$ to a set S . We use the notation a_{n} to denote the image of the integer n . We call a_{n} a term of the sequence.
Notation: $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is used to represent the sequence (note $\}$ is the same notation used for sets, so be careful). $\left\{a_{n}\right\}$ represents the ordered list $a_{1}, a_{2}, a_{3}, \ldots$.

Sequences

Examples:

- (1) $a_{n}=n^{2}$, where $n=1,2,3 \ldots$
- What are the elements of the sequence?

$$
1,4,9,16,25, \ldots
$$

- (2) $a_{n}=(-1)^{n}$, where $n=0,1,2,3, \ldots$
- Elements of the sequence?

$$
1,-1,1,-1,1, \ldots
$$

- 3) $a_{n}=2^{n}$, where $n=0,1,2,3, \ldots$
- Elements of the sequence?
$1,2,4,8,16,32, \ldots$

Arithmetic progression

Definition: An arithmetic progression is a sequence of the form
a, a+d,a+2d, ..., a+nd
where a is the initial term and d is common difference, such that both belong to R.

Example:

- $\mathrm{s}_{\mathrm{n}}=-1+4 \mathrm{n}$ for $\mathrm{n}=0,1,2,3, \ldots$
- members: -1, 3, 7, 11, ...

Geometric progression

$\underline{\text { Definition A geometric progression is a sequence of the form: }}$
$\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \ldots, \mathrm{ar}^{\mathrm{k}}$,
where a is the initial term, and r is the common ratio. Both a and r belong to R.

Example:

- $a_{n}=(1 / 2)^{n}$ for $n=0,1,2,3, \ldots$
members: $1,1 / 2,1 / 4,1 / 8, \ldots$.

Sequences

- Given a sequence finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: $1,3,5,7,9, \ldots$.
- What is the formula for the sequence?
- Each term is obtained by adding 2 to the previous term.
$1,1+2=3,3+2=5,5+2=7$
- What type of progression this suggest?

Sequences

- Given a sequence finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: $1,3,5,7,9, \ldots$
- What is the formula for the sequence?
- Each term is obtained by adding 2 to the previous term.
- $1,1+2=3,3+2=5,5+2=7$
- It suggests an arithmetic progression: a+nd with $\mathrm{a}=1$ and $\mathrm{d}=2$
- $\mathrm{a}_{\mathrm{n}}=1+2 \mathrm{n}$

Sequences

- Given a sequence finding a rule for generating the sequence is not always straightforward

Example 2:

- Assume the sequence: $1,1 / 3,1 / 9,1 / 27, \ldots$
- What is the sequence?
- The denominators are powers of 3 .
$1,1 / 3=1 / 3,(1 / 3) / 3=1 /(3 * 3)=1 / 9,(1 / 9) / 3=1 / 27$
- This suggests a geometric progression: $a r^{k}$ with $\mathrm{a}=1$ and $\mathrm{r}=1 / 3$
- $(1 / 3)^{\mathrm{n}}$

Recursively defined sequences

- The n-th element of the sequence $\left\{a_{n}\right\}$ is defined recursively in terms of the previous elements of the sequence and the initial elements of the sequence.

Example :

- $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2$ assuming $\mathrm{a}_{0}=1$;
- $\mathrm{a}_{0}=1$;
- $\mathrm{a}_{1}=3$;
- $\mathrm{a}_{2}=5$;
- $\mathrm{a}_{3}=7$;
- Can you write a_{n} non-recursively using n ?
- $a_{n}=1+2 n$

Fibonacci sequence

- Recursively defined sequence, where
- $\mathrm{f}_{0}=0$;
- $\mathrm{f}_{1}=1$;
- $\mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2}$ for $\mathrm{n}=2,3, \ldots$
- $\mathrm{f}_{2}=1$
- $\mathrm{f}_{3}=2$
- $\mathrm{f}_{4}=3$
- $\mathrm{f}_{5}=5$

Summations

Summation of the terms of a sequence:

$$
\sum_{j=m}^{n} a_{j}=a_{m}+a_{m+1}+\ldots+a_{n}
$$

The variable j is referred to as the index of summation.

- m is the lower limit and
- n is the upper limit of the summation.

Summations

Example:

- 1) Sum the first 7 terms of $\left\{n^{2}\right\}$ where $n=1,2,3, \ldots$.
-

$$
\sum_{j=1}^{7} a_{j}=\sum_{j=1}^{7} j^{2}=1+4+16+25+36+49=140
$$

- 2) What is the value of
$\sum_{k=4}^{8} a_{j}=\sum_{k=4}^{8}(-1)^{j}=1+(-1)+1+(-1)+1=1$

Arithmetic series

Definition: The sum of the terms of the arithmetic progression $a, a+d, a+2 d, \ldots, a+n d$ is called an arithmetic series.

Theorem: The sum of the terms of the arithmetic progression
$a, a+d, a+2 d, \ldots, a+n d$ is

$$
S=\sum_{j=1}^{n}(a+j d)=n a+d \sum_{j=1}^{n} j=n a+d \frac{n(n+1)}{2}
$$

- Why?

Arithmetic series

Theorem: The sum of the terms of the arithmetic progression a, $a+d, a+2 d, \ldots, a+n d$ is

$$
S=\sum_{j=1}^{n}(a+j d)=n a+d \sum_{j=1}^{n} j=n a+d \frac{n(n+1)}{2}
$$

Proof:

$$
\begin{aligned}
& S=\sum_{j=1}^{n}(a+j d)=\sum_{j=1}^{n} a+\sum_{j=1}^{n} j d=n a+d \sum_{j=1}^{n} j \\
& \sum_{j=1}^{n} j=1+2+3+4+\ldots+(n-2)+(n-1)+n
\end{aligned}
$$

Arithmetic series

Theorem: The sum of the terms of the arithmetic progression $a, a+d, a+2 d, \ldots, a+n d$ is

$$
S=\sum_{j=1}^{n}(a+j d)=n a+d \sum_{j=1}^{n} j=n a+d \frac{n(n+1)}{2}
$$

Proof:

$$
\begin{aligned}
& S=\sum_{j=1}^{n}(a+j d)=\sum_{j=1}^{n} a+\sum_{j=1}^{n} j d=n a+d \sum_{j=1}^{n} j \\
& \sum_{j=1}^{n} j=\underbrace{1+2+3+4+\ldots .+(n-2)+(n-1)+n}_{\underbrace{2}_{n+1} *(n+1)}
\end{aligned}
$$

Arithmetic series

Example: $\quad S=\sum_{j=1}^{5}(2+j 3)=$

$$
=\sum_{j=1}^{5} 2+\sum_{j=1}^{5} j 3=
$$

$$
=2 \sum_{j=1}^{5} 1+3 \sum_{j=1}^{5} j=
$$

$$
=2 * 5+3 \sum_{j=1}^{5} j=
$$

$$
=10+3 \frac{(5+1)}{2} * 5=
$$

$$
=10+45=55
$$

Arithmetic series

Example 2: $\quad S=\sum_{j=3}^{5}(2+j 3)=$

$$
\begin{aligned}
& =\left[\sum_{j=1}^{5}(2+j 3)\right]-\left[\sum_{j=1}^{2}(2+j 3)\right] \Longleftrightarrow \text { Trick } \\
& =\left[2 \sum_{j=1}^{5} 1+3 \sum_{j=1}^{5} j\right]-\left[2 \sum_{j=1}^{2} 1+3 \sum_{j=1}^{2} j\right] \\
& =55-13=42
\end{aligned}
$$

Double summations

Example: $\quad S=\sum_{i=1}^{4} \sum_{j=1}^{2}(2 i-j)=$

$$
\begin{aligned}
& =\sum_{i=1}^{4}\left[\sum_{j=1}^{2} 2 i-\sum_{j=1}^{2} j\right]= \\
& =\sum_{i=1}^{4}\left[2 i \sum_{j=1}^{2} 1-\sum_{j=1}^{2} j\right]= \\
& =\sum_{i=1}^{4}\left[2 i * 2-\sum_{j=1}^{2} j\right]= \\
& =\sum_{i=1}^{4}[2 i * 2-3]= \\
& =\sum_{i=1}^{4} 4 i-\sum_{i=1}^{4} 3= \\
& =4 \sum_{i=1}^{4} i-3 \sum_{i=1}^{4} 1=4 * 10-3 * 4=28
\end{aligned}
$$

Geometric series

Definition: The sum of the terms of a geometric progression a, ar, $\mathrm{ar}^{2}, \ldots, \mathrm{ar}^{\mathrm{k}}$ is called a geometric series.

Theorem: The sum of the terms of a geometric progression a , ar, $a r^{2}, \ldots, a r^{n}$ is

$$
S=\sum_{j=0}^{n}\left(a r^{j}\right)=a \sum_{j=0}^{n} r^{j}=a\left[\frac{r^{n+1}-1}{r-1}\right]
$$

Geometric series

Theorem: The sum of the terms of a geometric progression a, ar,
$\operatorname{ar}^{2}, \ldots, \mathrm{ar}^{\mathrm{n}}$ is $S=\sum_{j=0}^{n}\left(a r^{j}\right)=a \sum_{j=0}^{n} r^{j}=a\left[\frac{r^{n+1}-1}{r-1}\right]$
Proof:

$$
S=\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}
$$

- multiply S by r

$$
r S=r \sum_{j=0}^{n} a r^{j}=a r+a r^{2}+a r^{3}+\ldots+a r^{n+1}
$$

- Substract $r S-S=\left[a r+a r^{2}+a r^{3}+\ldots+a r^{n+1}\right]-\left[a+a r+a r^{2} . .+a r^{n}\right]$

$$
=a r^{n+1}-a
$$

$$
S=\frac{a r^{n+1}-a}{r-1}=a\left[\frac{r^{n+1}-1}{r-1}\right]
$$

Geometric series

Example:

$$
S=\sum_{j=0}^{3} 2(5)^{j}=
$$

General formula:

$$
\begin{aligned}
& S=\sum_{j=0}^{n}\left(a r^{j}\right)=a \sum_{j=0}^{n} r^{j}=a\left[\frac{r^{n+1}-1}{r-1}\right] \\
& S=\sum_{j=0}^{3} 2(5)^{j}=2 * \frac{5^{4}-1}{5-1}= \\
& =2 * \frac{625-1}{4}=2 * \frac{624}{4}=2 * 156=312
\end{aligned}
$$

Infinite geometric series

- Infinite geometric series can be computed in the closed form for $\mathrm{x}<1$
- How?

$$
\sum_{n=0}^{\infty} x^{n}=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} x^{n}=\lim _{k \rightarrow \infty} \frac{x^{k+1}-1}{x-1}=-\frac{1}{x-1}=\frac{1}{1-x}
$$

- Thus:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

