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Non-linear dimensionality 

reduction and kernels: 

eigenmaps, isomaps, locally 

linear embeddings

Presented by: Hanzhong (Victor) Zheng

Review of Dimensionality Reduction

• Dimensionality reduction can be done through 

1. feature selection: only keeps the most relevant variables 
from the original dataset. 

2. dimensionality reduction: finds the smaller set of new 
variables, containing basically the same information as the 
original variables.  

• Dimensionality reduction can also be categorized into: 

– linear dimensionality reduction (e.g. PCA, SVD) 

– non-linear dimensionality reduction (e.g. autoencoders, 
kernel PCA and others). 
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Non-linear dimensionality reduction

• This lecture: find a nonlinear low dimensional 
representation of data that reflects the data topology

• Methods covered:

– Isomaps

– Locally Embedding Space (LLE)

– Eigenmaps

Topology

• Topology: “the study of qualitative properties of 
certain objects that are invariant under a certain kind 
of transformation, especially those properties that 
are invariant under a certain kind of invertible 
transformation”

• “A topologist is one who doesn’t know the difference 
between a doughnut and a coffee cup” –John L. 
Kelley (In General Topology 1995, 88 footnote)
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Manifolds
• Definition: A manifold is a topological space that 

locally resembles Euclidean space near each point. 

Manifolds

• Three examples of manifolds

• All three are two-dimensional data embedded in 3D

– Linear, “S”-shape, “Swiss roll”

• For all three examples, we would like to recover:

– Their two-dimensional representation

– “Consistent” coordinates of the data in the 2D
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Manifolds and local distances

• In general, the distances induced by data (manifolds) 
may not be Euclidean. That is the global distances don’t 
respect the geometry. 

• Local distances can be still approximated with Euclidean 
distances

• Idea for the dimensionality reduction: 

– Define global distances/similarity in 
terms of local distances/similarity

– Use these to define a low-dimensional 
embedding (low-dimensional 
representation) of the data

• The idea can be implemented with the 
help of the Neighborhood graph  

Neighborhood Graph
• A neighborhood graph

– Vertices = data points

– Edges and their weights reflect local similarity or local 
distances

– Only points close to each other (neighbors) are connected
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Neighborhood Graph

Approach 1: select and connect all points within the ε
neighborhood

Neighborhood Graph construction

Approach 2: pick and connect k nearest neighbor 
points

k=4
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Neighborhood Graph

• Distance-based neighborhood graph:

– Edge weight: Euclidean distance between two 
data points – d (xi,xj)

• Similarity-based neighborhood graph:

– Edge weight:

• Simple:   Wij = 1 if connected, 0 otherwise 

• Kernel:                                     if connected, 0 otherwise 
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Non-linear dimensionality reduction

• Three methods to define lower dimensional embedding 
of data instances:
– Isomaps
– Locally Embedding Space (LLE)
– Eigenmaps

• All of these rely on the neighborhood graph connecting 
only data instances close to each other

• First let us introduce Multi-dimensional scaling (MDS) 
method …
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Multidimensional Scaling (MDS)

• MDS is a classical approach that can map the original
high dimensional space to a lower dimensional space.
It attempts to preserve the pairwise distance among
the data points.

• It is used when we want to visualize high dimensional
data say in 2 or 3D

Multidimensional Scaling (MDS)
Idea: MDS maps points to a low dimensional space (say of 
dimension k) such that the Euclidean distances between the 
points in this new space approximate the original distance matrix.

Map input points xi to zi such that 

• Classical MDS: the norm         is the Euclidean distance  

• Objective function: 
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Isomap
Algorithm 
• Step 1: Construct the neighborhood graph G with edge weights 

corresponding to local distances 

• Step 2: compute the shortest distance between all pairs of points:

– The shortest distance can be calculated via Floyd or Dijkstra
algorithm. 

• Step 3: Construct the k-dimensional embedding

– Use classical MDS to find a k-dimensional embedding
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All   z1, z2, …zI are k-dimensional
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Isomap

• Advantages:

– Non-linear dimensionality reduction

– Non-iterative polynomial time algorithm 

– Guarantee of globally optimality:

• For intrinsically Euclidean manifolds, a guarantee of 
asymptotic convergence to the true structure

• The ability to discover manifolds of arbitrary 
dimensionality

• Disadvantage:

– Sensitive to noise 

– Few free parameters
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Isomaps: Example 

• Dimensionality Reduction 
for visual perception

– 64 x 64 image

– 698 raw images

– Isomap (k = 6)

Isomap: Example

• Handwritten ‘2’

– 1000 handwritten 
2s

– Isomap (є = 4.2)
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Locally Linear Embedding (LLE)

• Manifold Characteristics/Key Assumption 

– We expect each data point and its neighbors to lie 
on or close to a locally linear patch

– But, how to combine all local patches together? 

M

x1

x2R2

Rn

LLE: Intuition

• Assume that manifold is approximately “linear” 
when viewed locally (in a small neighborhood)

• A good projection should preserve this local 
geometric property as much as possible
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LLE algorithm
• Step 1: Select neighbors for each data instance xi

• Step 2: Each data instance is written as a convex 
combination of its neighbors. Weights of the convex 
combination ‘reconstruct’ each point from its 
neighbors. 

LLE Algorithm

• Step 2: The weights chosen aim to minimize the 
reconstruction error.

Note: Assign weights under two constraints:
– Wij = 0 if Xj does not belong to set of neighbors of 

Xi

– The rows of the weight matrix sum to one i.e. 
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LLE Algorithm 
• Step 3: Map       to  a low-

dimensional embedding

The cost function can be 
minimized by solving a sparse 
NxN eigenvalue problem:
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LLE: Eigenvalue Problem

The following is a more direct and simpler derivation for Y:
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LLE Example

Images of faces mapped into the embedding space described by the first two 

coordinates of LLE. Representative faces are shown next to circled points. The 

bottom images correspond to points along the top-right path (linked by solid line) 

illustrating one particular mode of variability in pose and expression. 

LLE: effect of k 

• Require dense data points on the manifold for 
good estimation 
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Limitations of LLE

• require dense data points on the manifold for 
good estimation

• A good neighborhood seems essential to their 
success
– How to choose k?
– Too few neighbors

• Results in rank deficient tangent space and lead to over-
fitting

– Too many neighbors
• Tangent space will not match local geometry well

Laplacian Eigenmaps

• Problem: Given a set (x1, x2, …, xn ) of n points in Rd, 
find a set of points (y1, y2,…,yn ) in Rk (k << d)  such 
that yi represents xi.

• Steps

– Build the adjacency graph

– Choose the weights for edges in the graph

– Eigen-decomposition of the graph Laplacian

– Form the low-dimensional embedding
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Laplacian Eigenmaps Algorithm

• Step 1: Construct the neighborhood graph with 
weights modeling local similarities: 
– Simple: 1 if connected; 0 otherwise

– Kernels: Gaussian or Heat kernels

• Step 2: Construct Graph-Laplacian matrix
• Construct diagonal weight matrix D from the weight matrix

• Construct Laplacian matrix L = D-W

– Laplacian is a symmetric, positive semi-definite matrix
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Laplacian Eigenmaps Algorithm

• Step 3: Finding of the lower dimensional embedding
– Find                              that preserves local similarities

– Note: each y is low-dimensional

Objective: minimize

– The above objective function can be rewritten as: 

– Solution: Compute eigenvalues and eigenvectors of the 
generalized eigenvector problem
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Generalized Eigenvector Problem

• Suppose we have the n points such that (x1, 
x2, …, xn ) in Rd 

• Construct the weight matrix  between each 
point

• Based on equation                 , we can compute 
the Eigenvalues 
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Euclidean Embedding Space

Once we have all the Eigenvalues, then we solve 
equation                       to compute the Eigenvector

Since                    has the dimension 

Then Eigenvector    has the dimension  

Lv = lDv v

Lv = lDv

Lv - lDv = 0

(L- lD)v = 0

(L-lD) n*n

v n*1
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Euclidean Embedding Space

• Let                             be the eigenvector 
solutions to the equation                        , 
ordered according to their eigenvalues,  
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Euclidean Embedding Space

• Then we leave out the eigenvector      
corresponding to eigenvalue        and use the 
next k eigenvectors                               for 
embedding in k-dimensional Euclidean space. 

• The k-dimensional embedding space is 
denoted as
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Euclidean Embedding Space
Once we find all Eigenvectors, then, we can project 
the data points to lower dimension         embedding 
space

We reduce the dimension from n * d to n * k
represents the coordinates 

of all n data points at 1st dimension in the embedding 
space.
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Optimal embedding space 

• Objective function:

• The constraint                removes arbitrary 
scaling factor

• The constraint                 removes a translation 
invariance in y 
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Laplacian Eigenmaps: Embedding 
Space

After the optimization, each data point       can 
be maped into the optimal k-dimensional 
embedding space

is the coordinate of point      at jth
dimension at k-dimensional space, where 
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Laplacian Eigenmaps Example
• Suppose we want to project                            

into 2 dimensional space

• Let                         to be the calculated 
eigenvalues with increasing order 

• Let                          be the eigenvector solutions 
of equation

• Take             for embedding in 2-dimensional 
space
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Locally Linear Embedding and 
Laplacian Eigenmap

• LLE is connected with Laplacian Eigenmap

• LLE minimizes                            to reduce 
eigenvectors of 

• Actually, finding eigenvectors of                     
can be re-interpreted as finding eigenvectors 
of iterated Laplacian .
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Laplacian Eigenmap Example

• Swiss roll
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Laplacian Eigenmap Example

• 2D embedding of the swiss roll

Laplacian Eigenmap Example
• 300 most frequent words from Brown corpus

• Each word is represented by a 600 dimensional vector

• Laplacian Eigenmap with N = 14, t = inf

Framgents labeled by  arrows, from left to right. The first is exclusively infinites of verbs, the 
second contains prepositions and the third mostly modal and auxiliariy verbs
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Summary

• Isomap, LLE and Laplacian Eigenmap: non-
linear dimensionality reduction technique

• Useful for learning manifolds, understanding 
low dimensional data embedded in high 
dimensional space.

• Linear dimensionality reduction technique 
(PCA, SVD) fails for this type of data.

• All three can preserve local geometry (inter-
point relationships)
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