CS 3750 Machine Learning Lecture 4

Monte Carlo methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Monte Carlo inference

- Let us assume we have a probability distribution $P(\mathrm{X})$ represented e.g. using BBN or MRF, and we want calculate $P(\mathrm{X}=\mathrm{x}) \quad(P(\mathrm{x})$ in short $)$
- We can use exact probabilistic inference, but it may be hard to calculate
- Monte Carlo approximation:
- Idea: The probability $P(\mathrm{x})$ is approximated using sample frequencies
- Idea (first method):
- Generate a random sample D of size M from $P(\mathrm{X})$
- Estimate P(x) as:

$$
\hat{P}_{D}(X=x)=\frac{M_{X=x}}{M}
$$

Absolute Error Bound

- Hoeffding's bound lets us bound the probability with which the estimate $\hat{P}_{D}(x)$ differs from $P(x)$ by more than ε

$$
P\left(\hat{P}_{D}(x) \notin[P(x)-\varepsilon, P(x)+\varepsilon]\right) \leq 2 e^{-2 M \varepsilon^{2}} \leq \delta
$$

The bound can be used to decide on how many samples are required to achieve a desired accuracy:

$$
M \geq \frac{\ln (2 / \delta)}{2 \varepsilon^{2}}
$$

Relative Error Bound

- Chernoff's bound lets us bound the probability of the estimate $\hat{P}_{D}(x)$ exceeding a relative error \mathcal{E} of the true value $P(x)$.

$$
P\left(\hat{P}_{D}(x) \notin P(x)(1+\in)\right) \leq 2 e^{-M P(x) \varepsilon^{2} / 3} \leq \delta
$$

- This leads to the following sample complexity bound:

$$
M \geq 3 \frac{\ln (2 / \delta)}{P(x) \varepsilon^{2}}
$$

Monte Carlo inference challenges

Challenge 1: How to generate M (unbiased) examples from the target distribution $\mathbf{P}(\mathbf{X})$?

- Generating (unbiased) examples from $\mathrm{P}(\mathrm{X})$ may be hard, or very inefficient
Example:
- Assume I have a distribution over 100 binary variables
- There are 2^{100} possible configurations of variable values
- Trivial sampling solution:
- calculate and store the probability of each configuration
- Pick randomly a configuration based on its probability
- Problem: terribly inefficient in time and memory

Monte Carlo inference challenges

Challenge 2: How to estimate the expected value of $f(x)$ for $P(x)$:

- Generally, we can estimate this expectation by generating samples $\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{M}]$ from P , and then estimating it as:

$$
\begin{gathered}
E_{P}[f]=\sum_{x} P(x) f(x) \quad E_{P}[f]=\int_{x}^{x} p(x) f(x) d x \\
\hat{\Phi}=\hat{E}_{P}[f]=\frac{1}{M} \sum_{m=1}^{M} f(x[m])
\end{gathered}
$$

- Using the central limit theorem, the estimate $\hat{\Phi}$ follows $N\left(0, \frac{\sigma^{2}}{M}\right)$
- Where is the variance for $f(x)$ is

$$
\sigma^{2}=\int_{x} p(x)\left[f(x)-E_{P}(f(x))\right]^{2} d x
$$

- Problem: we are unable to efficiently sample $P(\mathrm{x})$. What to do?

Central limit theorem

- Central limit theorem:

Let random variables $X_{1}, X_{2}, \cdots X_{m}$ form a random sample from a distribution with mean μ and variance σ^{2}, then if the sample n is large, the distribution

$$
\sum_{i=1}^{m} X_{i} \approx N\left(m \mu, m \sigma^{2}\right) \quad \text { or } \quad \frac{1}{m} \sum_{i=1}^{m} X_{i} \approx N\left(\mu, \sigma^{2} / m\right)
$$

Effect of increasing the sample size m on the sample mean:

Monte Carlo inference: BBNs

Challenge 1: How to generate M (unbiased) examples from the target distribution $\mathbf{P}(\mathbf{X})$ defined by a BBN?

- Good news: Sample generation for the full joint defined by the BBN is easy
- One top down sweep through the network lets us generate one example according to $\mathrm{P}(\mathrm{X})$
- Example:

Examples are generated in a top down manner, following the links

BBN sampling example

BBN sampling example

CS 3750 Advanced Machine Learning

BBN sampling example

BBN sampling example

CS 3750 Advanced Machine Learning

BBN sampling example

Monte Carlo inference: BBNs

Challenge 1: How to generate M (unbiased) examples from the target distribution $\mathbf{P}(\mathbf{X})$ defined by BBN?

- Good news: Sample generation for the full joint defined by the BBN is easy
- One top down sweep through the network lets us generate one example according to $\mathrm{P}(\mathrm{X})$
- Example:

Examples are generated in a top down manner, following the links

- Repeat many times to get enough of examples

Monte Carlo inference: BBNs

Knowing how to generate efficiently examples from the full joint lets us efficiently estimate:

- Joint probabilities over a subset variables
- Marginals on variables
- Example:

The probability is approximated using sample frequency

$$
\tilde{P}(B=T, J=T)=\frac{N_{B=T, J=T} \longleftarrow \text { \# samples with } B=T, J=T}{N} \longleftarrow \text { total \# samples }
$$

Monte Carlo inference: BBNs

- MC approximation of conditional probabilities:
- The probability can approximated using sample frequencies
- Example:
$\tilde{P}(B=T \mid J=T)=\frac{N_{B=T, J=T}}{N_{J=T}}$ \# samples with $B=T, J=T$
- Solution 1 (rejection sampling):
- Generate examples from $P(\mathrm{X})$ which we know how to do efficiently
- Use only samples that agree with the condition $(\mathrm{J}=\mathrm{T})$, the remaining samples are rejected
- Problem: many examples are rejected. What if $P(\mathrm{~J}=\mathrm{T})$ is very small?

Monte Carlo inference: BBNs

- MC approximation of conditional probabilities
- Solution 2 (likelihood weighting)
- Avoids inefficiencies of rejection sampling
- Idea: generate only samples consistent with an evidence (or conditioning event); If the value is set no sampling
- Problem: using simple counts is not enough since these may occur with different probabilities
- Likelihood weighting:
- With every sample keep a weight with which it should count towards the estimate

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

Second sample

BBN likelihood weighting example

Second sample

$\mathbf{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$				F	
B	E	T	F		
T	T	0.95	0.05		
T	F	0.94	0.06		
F	T	0.29	0.71		
F	F	0.0010	0.999		
$\mathbf{P}(M \mid A)$					
MaryCalls			A	T	F
			T	0.7	
			F	0.01	0.99

$\mathrm{J}=\mathrm{T}($ set !!!)

BBN likelihood weighting example

Second sample

Likelihood weighting

- Assume we have generated the following M samples:

- If we calculate the estimate:

$$
P(B=T \mid J=T, M=F)=\frac{\# \text { sample_with }(B=T)}{\text { \#total_sample }}
$$

a less likely sample from $P(X)$ may be generated more often.

- For example, sample than in $P(X)$
 is generated more often
- So the samples are not consistent with $\mathrm{P}(\mathrm{X})$.

Likelihood weighting

- Assume we have generated the following M samples:

How to make the samples consistent?
Weight each sample by probability with which it agrees with the conditioning evidence $\mathrm{P}(\mathrm{e})$.

Likelihood weighting

- How to compute weights for the sample?
- Assume the query $P(B=T \mid J=T, M=F)$
- Likelihood weighting:
- With every sample keep a weight with which it should count towards the estimate

$$
\begin{gathered}
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{i=1}^{M} 1\left\{B^{(i)}=T\right\} w^{(i)}}{\sum_{i=1}^{M} w^{(i)}} \\
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{\text {samples with } B=T \text { and } J=T, M=F} w_{B=T} w_{B=x}}{\sum_{\text {samples with any value of } B \text { and } J=T, M=F}}
\end{gathered}
$$

Likelihood weighting

- Assume M samples where evidence is enforced:

- We can use $P(e)$ to weight each sample and correct the bias.
- The correct estimate is then:

$$
\tilde{P}(A=T \mid J=T, M=F)=\frac{\sum_{i=1}^{M} 1\left\{A^{(i)}=T\right\} w^{(i)}}{\sum_{i=1}^{M} w^{(i)}}
$$

Monte Carlo inference: MRFs

Challenge: How to generate M (unbiased) examples from the target distribution $\mathbf{P}(\mathbf{X})$ defined by an MRF?

- Trivial solution:
- calculate and store the probability of each configuration
- Pick randomly a configuration based on its probability
- Problem: terribly inefficient for a large number of variables
- Can we do better, similarly to BBN?
- In general, sampling $\mathrm{P}(\mathrm{X})$ or $\mathrm{P}\left(\mathrm{X}^{\prime} \mid\right.$ Evidence $)$ can be hard?

Next: avoid sampling $\mathrm{P}(\mathrm{X})$ by sampling $\mathrm{Q}(\mathrm{X})$

Importance Sampling

- An approach for estimating the expectation of a function $f(x)$ relative to some distribution $\mathrm{P}(\mathrm{X})$ (target distribution)
- generally, we can estimate this expectation by generating samples $x[1], \ldots, x[M]$ from P, and then estimating

$$
E_{P}[f]=\frac{1}{M} \sum_{m=1}^{M} f(x[m])
$$

- However, we might prefer to generate samples from a different distribution Q (proposal or sampling distribution) instead, since it might be impossible or computationally very expensive to generate samples directly from $\mathrm{P}(\mathrm{X})$.
- Q can be arbitrary, but it should dominate P, i.e. $\mathrm{Q}(\mathrm{x})>0$ whenever $\mathrm{P}(\mathrm{x})>0$

Unnormalized Importance Sampling

- Since we generate samples from Q instead of P ,
- we need to adjust our estimator to compensate for the incorrect sampling distribution.

$$
E_{p(X)}[f(X)]=E_{Q(x)}\left[f(x) \frac{P(x)}{Q(x)}\right]
$$

- So we can use standard estimator for expectations relative to Q .
- Method: We generate a set of M samples $\mathrm{D}=\{\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{M}]\}$ from Q , and estimate:

$$
\hat{E}_{D}(f)=\frac{1}{M} \sum_{m=1}^{M} f(x[m]) \frac{P(x[m])}{Q(x[m])}
$$

Importance sampling

- This is an unbiased estimator: its mean for any data set is precisely the desired value
$w(x)=P(x) / Q(x) \quad$ - a weighting function, or a correction weight
- We can estimate the distribution of the estimator around its mean: as $\mathrm{M} \rightarrow \infty$

$$
E_{Q(X)}[f(X) w(X)]-E_{P(X)}[f(X)] \propto N\left(0 ; \sigma_{Q}{ }^{2} / M\right)
$$

where $\quad \sigma_{Q}{ }^{2}=\left[E_{Q(X)}\left[(f(X) w(X))^{2}\right]\right]-\left(E_{Q(X)}[f(X) w(X)]\right)^{2}$

$$
\sigma_{Q}{ }^{2}=\left[E_{Q(X)}\left[(f(X) w(X))^{2}\right]\right]-\left(E_{P(X)}[f(X)]\right)^{2}
$$

Importance sampling

- When $f(X)=1$, the variance is simply the variance of the weighting function $\mathrm{P}(\mathrm{X}) / \mathrm{Q}(\mathrm{X})$. Thus, the more different Q is from P, the higher is the variance of the estimator.
- In general, the lowest variance is achieved when

$$
Q(X) \propto|f(X)| P(X)
$$

- We should avoid cases where our sampling probability $\mathrm{Q}(\mathrm{X}) \ll \mathrm{P}(\mathrm{X}) \mathrm{f}(\mathrm{X})$ in any part of the space, as these cases can lead to very large or even infinite variance.
- Problem with un-normalized IS: P is assumed to be known

Normalized Importance Sampling

- When P is only known up to a normalizing constant α
- We have access to a function $P^{\prime}(\mathrm{X})$, such that P^{\prime} is not a normalized distribution, but $P^{\prime}(\mathrm{X})=\alpha P(\mathrm{X})$
- In this context, we cannot define the weights relative to P, so we define:

$$
w(X)=\frac{P^{\prime}(X)}{Q(X)}
$$

$E_{P(X)}[f(X)]=\sum_{x} P(x) f(x)=\sum_{x} Q(x) f(x) \frac{P(X)}{Q(x)}=\frac{1}{\alpha} \sum_{x} Q(x) f(x) \frac{P^{\prime}(x)}{Q(x)}$ $=\frac{1}{\alpha} E_{Q(x)}[f(X) w(X)]=\frac{E_{Q(X)}[f(X) w(X)]}{E_{Q(X)}[w(X)]}$
Why? $\quad E_{Q(X)}[w(X)]=\sum_{x} Q(x) \frac{P^{\prime}(x)}{Q(x)}=\sum_{x} P^{\prime}(x)=\alpha$

Importance sampling

- Using an empirical estimator for both the numerator and denominator, we can estimate:

$$
\hat{E}_{D}(f)=\frac{\sum_{m=1}^{M} f(x[m]) w(x[m])}{\sum_{m=1}^{M} w(x[m])}
$$

- Although the normalized estimator is biased, its variance is typically lower than that of the unnormalized estimator. This reduction in variance often outweighs the bias term.
- So normalized estimator is often used in place of the unnormalized estimator, even in cases where P is known and we can sample from it effectively.

Importance sampling for estimating conditional probabilities in BBNs

Assume a Bayesian Network

- We want to calculate P ($\mathrm{x}^{\prime} \mid$ evidence)
- This is hard if we need to go opposite the links and account for the effect of evidence on non-descendants
Objective: generate samples efficiently using a simpler proposal distribution $\mathrm{Q}(\mathrm{x})$
Solution: a mutilated belief network (Koller, Friedman 2009)
- Idea:
- Avoid propagation of evidence effects to nondescendants;
- Disconnect all variables in the evidence from their parents

Mutilated Belief network

- Assume we want to calculate $\mathrm{P}(\mathrm{x} \mid \mathrm{B}=\mathrm{T}, \mathrm{J}=\mathrm{T})$ in the Alarm network
- Use $\mathrm{B}=\mathrm{T}$ and $\mathrm{J}=\mathrm{T}$ to build a mutilated network

Original network
Mutilated network

Mutilated Belief network

- Assume the evidence is $J=j^{*}$ and $B=b^{*}$
- Original network:
$P\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P\left(b^{*}\right) P(e) P\left(a \mid b^{*}, e\right) P\left(j^{*} \mid a\right) P(m \mid a)$
- Mutilated network:

$$
Q\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P(e) P\left(a \mid b^{*}, e\right) P(m \mid a)
$$

- Note that $w(x)=\frac{P(x)}{Q(x)}=P\left(b^{*}\right) P\left(j^{*} \mid a\right)$

Mutilated Belief network

- Assume the evidence is $\mathrm{J}=\mathrm{j}^{*}$ and $\mathrm{B}=\mathrm{b}^{*}$
- Original network:
$P\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P\left(b^{*}\right) P(e) P\left(a \mid b^{*}, e\right) P\left(j^{*} \mid a\right) P(m \mid a)$
- Mutilated network:
$Q\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P(e) P\left(a \mid b^{*}, e\right) P(m \mid a)$
- Note that $w(x)=\frac{P(x)}{Q(x)}=P\left(b^{*}\right) P\left(j^{*} \mid a\right)$

So importance sampling with a proposal distribution based on mutilated network is equal to likelihood weighting

Original network

Likelihood Weighting

- Question: When to stop? How many samples do we need to see?
- Intuition: not every sample contribute equally to the quality of the estimate. A sample with a high weight is more compatible with the evidence e, and may provide us with more information.
- Solution: We stop sampling when the total weight of the generated samples reaches a pre-defined value.
- Benefits: It allows early stopping in cases where we were lucky in our random choice of samples.

Markov chain Monte Carlo

- Likelihood weighting: samples are generated according to Q and every sample from Q is reweighted according to its likelihood, but the Q distribution may be very far from the target
- MCMC is a strategy for generating samples from the target distribution, including conditional distributions
- MCMC:
- Markov chain defines a sampling process that
- initially generates samples very different from the target distribution (e.g. posterior)
- but gradually refines the samples so that they are closer and closer to the posterior.

MCMC

- The construction of a Markov chain requires two basic ingredients
- a transition matrix $\quad P$
- an initial distribution π_{0}
- Assume a finite set $S=\{1, \ldots \mathrm{~m}\}$ of states, then \mathbf{a} transition matrix is

$$
P=\left(\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 m} \\
p_{21} & p_{22} & \cdots & p_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m 1} & p_{m 2} & \cdots & p_{m m}
\end{array}\right)
$$

Where $\quad p_{i j} \geq 0 \quad \forall(i, j) \in S^{2} \quad$ and $\quad \sum_{j \in S} p_{i j}=1 \quad \forall i \in S$

Markov Chain

- Markov chain defines a random process of selecting states
$x^{(0)}, x^{(1)}, \ldots x^{(m)}, \ldots$
Initial state selected based on π_{0}

Subsequent states selected based on the previous state and the transition matrix

- Chain Dynamics

$$
\begin{aligned}
& \quad P^{(t+1)}\left(X^{(t+1)}=x^{\prime}\right)=\sum_{x \in \operatorname{Dom}(X)} P^{(t)}\left(X^{(t)}=x\right) T\left(x \rightarrow x^{\prime}\right) \\
& \text { Probability of a state } \mathrm{x}^{\prime} \text { being selected }
\end{aligned}
$$ at time $t+1$

transition matrix

MCMC

- Markov chain satisfies

$$
P\left(X_{n+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots X_{n}=i_{n}\right)=P\left(X_{n+1}=j \mid X_{n}=i_{n}\right)
$$

- Irreducibility: A MC is called irreducible (or undecomposable) if there is a positive transition probability for all pairs of states within a limited number of steps
- In irreducible chains there may still exist a periodic structure such that for each state $i \in S$, the set of possible return times to i when starting in i is a subset of the set $p \mathrm{~N}=\{p, 2 p, 3 p, \ldots\}$ containing all but a finite set of these elements. The smallest number p with this property is the so-called period of the chain

$$
p=\operatorname{gcd}\left\{n \in N: p_{i i}{ }^{(n)}>0\right\}
$$

MCMC

- Aperiodicity: An irreducible chain is called aperiodic (or acyclic) if the period p equals 1 or, equivalently, if for all pairs of states there is an integer $n_{i j}$ such that for all $n \geq n_{i j}$, the probability $p^{(n)}{ }_{i j}>0$.
- If a Markov chain satisfy both irreducibility and aperiodicity, then it converges to an invariant distribution $q(x)$
- A Markov chain with transition matrix P will have an equilibrium distribution q iff $q=q P$.
- A sufficient, but not necessary, condition to ensure a particular $\mathrm{q}(\mathrm{x})$ is the invariant distribution of transition matrix P is the following reversibility (detailed balance) condition

$$
q\left(x^{i}\right) P\left(x^{i-1} \mid x^{i}\right)=q\left(x^{i-1}\right) P\left(x^{i} \mid x^{i-1}\right)
$$

Markov Chain Monte Carlo

Objective: generate samples from the target distribution (e.g. posterior)

- Idea:

Markov chain defines a sampling process that:

- initially generates samples very different from the target posterior
- but gradually refines the samples so that they are closer and closer to the target distribution

