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Inferences

Last lecture:
« Exact inferences on chains and trees
» Factor graph representation and inference

chain tree
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Trees

Undirected Tree Directed Tree Polytree

Slides by C. Bishop

Factor graph
A graphical representation that lets us express a factorization of a
function over a set of variables
A factor graph is bipartite graph where:
* One layer is formed by variables

« Another layer is formed by factors or functions on subsets of
variables

Example: a function over variables x;, X, , ... Xz

9(Xy, Xy, .. X5 ) = Fa(X) fa(X,) fe(X1.X5 X3) To(X3 1X,) (X3 ,Xs)

R )

LT

fa fs f fo fe
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Factor Graphs

Z1 T2 €3

fa .fb fc fd
p(x) = fa(w1,22) fo (21, 22) fe(@2, 23) fa(x3)

p(x) = H fs(xs)

Slides by C. Bishop

Inferences on factor graphs

« Efficient inference algorithms for factor graphs built
for trees [Frey, 1998; Kschischnang et al., 2001] :
* Sum-product algorithm
* Max product algorithm
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Inferences

Last lecture:

« Exact inferences on chains and trees

« Factor graph representation and inference on factor
graphs

Open question:
» Exact inferences on arbitrary MRFs and BBNs

Clique tree algorithm:
+ Clique tree = Junction tree = tree decomposition
of the graph
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Tree decomposition of the graph

Ai
 Atree decomposition of / \C C— H
a graph G: B — \F/

— Atree T with a vertex set \\
associated to every node. T E
— For all edges {v,w}eG:
there is a set containing
bothvandwinT.
— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Conversion of the BBN and MRF to a Clique
tree

MRF conversion:

Option 1:

 Viatriangulation to form a chordal graph

 Cliques in the chordal graph define the clique tree

Option 2:

+ from the induced graph built by running the
variable elimination procedure

+ Cliques are factors generated during the procedure

BBN conversion:
« Convert the BBN to an MRF — a moral graph
« Apply MRF conversion
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Clique tree algorithms

» We have precompiled a clique tree.

* So how to take advantage of the clique tree to perform
inferences?
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VE on the Clique tree

» Variable Elimination on the clique tree
— works on factors

» Makes factor a data structure
— Sends and receives messages
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Clique trees

+ Example clique tree
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Clique tree properties

* Running intersection property
— if C;and C; both contain a vertex X, then all cliques on the
unique path between them also contain X
« Sepset Sij =C, ij
— separation set: Variables X on one side of sepset are
separated from the variables Y on the other side in the
factor graph given variables in S
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Clique trees

¢ Running intersection:
E.g. Cliques involving G form
a connected subtree.
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Clique trees

+ Sepsets: Sij =C, ij
» Variables X on one side of a sepset are
separated from the variables Y on the

other side given variables in S

.

Sepsets
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Clique trees

Initial potentials
Assign factors to cliques and multiply them.

7°(C,D) 7°(G,1,D)

7°(G,J,S,L)

7°(H,G,J)

p(C,D,G,I,S,J,L,K,H)
=7°(C,D)z°(G,1,D)z°(G,S, N7°(G,J,S,L)z°(S,K)z°(H,G, J)
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Message Passing VE

*  Query for P(J) @
— Eliminate C: Message sent

from [C,D]

to [G,I,D]

7,(D)=) 7C,D]

Message received
at [G,I,D] --
[G,I,D] updates:

7,[G,1,D]=1,(D)x z[G,1,D]
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Message Passing VE

*  Query for P(J)
_ Eliminate D: 7,(G,1)=).7,[G,1,D]
D

Message sent
.T“ from [6,1,0]
D G,1I to [G,S,I]

@6

Message received
at [G,S,I] --
[G,S,I] updates:

m,[G,S,11=1,(G,1)x 73[G, S, 1]
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Message Passing VE

*  Query for P(J)
— Eliminate I: 7(G.8)=).7,[G,S,1]
|
Message sent

from [G,S,I]
to [G,],S,L]

Message received
at [G,],S,L] --
[G,],S,L] updates:

,[G,J,5,L]=7,(G,S)x,[G,J,S,L]

[G,],5,L] is not ready!

CXG)
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Message Passing VE

*  Query for P(J)
— Eliminate H: 7,(G,J)=) 7;[H,G,J]
H

Message sent
N > from [H,G,]]
D G, I J G,S to [G,],S,L]

4

T G,J

7,[G,J,5,L]=1,(G,S)x7,(G,J)x7,[G,J,S,L]
And ...

@®
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Message Passing VE

*  Query for P(J)

— Eliminate K: Te(S)=ZK:77°[S,K] (©
C)

S Message sent
3 GI from [S,K]

’ ! G,S to [G,],S,L]
e
All messages @
received at [G,],S,L] | 1 G,]

[G,],S,L] updates: ‘

7,[6,3,8,L]=1,(G,$)x,(G, J)x75(S)x 2°[G, .S, L]

And calculate P(J) from it by summing out G,S,L
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Message Passing VE

* [G,J,S,L] cligue potential

e ... 1s used to finish the inference

> >
b GI |,Gs
e
s
G,J 1
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Message passing VE

Often, many marginals are desired

— Inefficient to re-run each inference from scratch
— One distinct message per edge & direction
Methods :

— Compute (unnormalized) marginals for any vertex
(clique) of the tree

— Results in a calibrated clique tree Zﬂi = Zﬂj
Ci—Sj; Cc;-S

Recap: three kinds of factor objects
— Initial potentials, final potentials and messages
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Two-pass message passing VE

Chose the root clique, e.g. [S,K]
Propagate messages to the root

! G,S
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Two-pass message passing VE

Send messages back from the root

« <
m
GS1?t
*T@
S
GJ!
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Message Passing: BP

Belief propagation
— Addifferent algorithm but equivalent to variable
elimination in terms of the results

— Asynchronous implementation
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Message Passing: BP

Each node: multiply all the messages and divide by the one
that is coming from node we are sending the message to

— Clearly the same as VE

CZSﬂ- Z k]‘N_‘I(:I)é'k*)I
S,y =— - Z Hé‘kﬁl

i—j
S i . KeEN(\]

J—1 ]—1

— Initialize the messages on the edges to 1
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Message Passing: BP

Hr3=1
0 0 0
(A B) 2(B,C) ——  z(C,D)
Store the last message 0,43 = [Z”z(B C)J

on the edge and divide
each passing message
by the last stored.

7,(C,D) = 2(C, D) 2222 = 70(C, D). 7 (B,C)
H B

2,3

Mp3 =0y 5= (Z%(B C)] New message stored
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Message Passing: BP
23 Z(Z”g(BvC)]

aRaltimEntt)

7°(A,B) 72(B,C) «  m(CD)

C,D)=7%(C,D %(B,C)=7x2(C,D
Store the last message 72(C.D) =75 )ZB:HZ( )= (C.D)ts

on the edge and divide

each passing message C.D
by the last stored. G5z = 2”3( )

23 ”g(B,C)X 0 « 0 “ 0
7,(B,C)= 7[2(8 C)ﬂzs(c) ﬂz,s(C) ;%(C:D) ﬂ2,3(C)—”2(BvC) ZD:”3(CID)

U3 =0y .= (Z@(C D)) > 73(C,D)> 73(B,C)  New message
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Message Passing: BP

=Y 73(C,D)Y 7, (B,C)

aRaltimbEantt)

7°(A,B) 7,(B,C) «  m(CD)

Cc,D)=7%(C,D %(B,C
Store the last message 75(C.D) =75 )ZB"HZ( )

on the edge and divide

each passing message C.D
by the last stored. Oo-s2 = 2”3( )

7,(B,C)=7,(B,C)x Y 7;(C,D) The same as before
i Zﬂg (C,D)x Zﬂ'z (B,C) S
m,(B,.C)=7,(B, C)ﬂ23(>C) =7,(B,C)x Z 9(C.0)x Z 1(8.0) =7,(B,C)
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Loopy belief propagation

« The asynchronous BP algorithm works on clique trees

« What if we run the belief propagation algorithm on a non-tree
structure?

 Sometimes converges

« If it converges it leads to an approximate solution
« Advantage: tractable for large graphs
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Loopy belief propagation

« If the BP algorithm converges, it converges to an optimum of
the Bethe free energy

See papers:

* Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief
Propagation, 2000

« Yedidia J.S., Freeman W.T. and Weiss Y. Understanding
Belief Propagation and Its Generalizations, 2001
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