CS 3750 Machine Learning

Lecture 4

Graphical models: inference

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Inferences

Last lecture:

- Exact inferences on chains and trees
- Factor graph representation and inference
chain
tree

Trees

Undirected Tree

Directed Tree

Polytree

Factor graph

A graphical representation that lets us express a factorization of a function over a set of variables
A factor graph is bipartite graph where:

- One layer is formed by variables
- Another layer is formed by factors or functions on subsets of variables
Example: a function over variables $x_{1}, x_{2}, \ldots x_{5}$

$$
\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{5}\right)=\mathrm{f}_{\mathrm{A}}\left(\mathrm{x}_{1}\right) \mathrm{f}_{\mathrm{B}}\left(\mathrm{x}_{2}\right) \mathrm{f}_{\mathrm{C}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathrm{f}_{\mathrm{D}}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right) \mathrm{f}_{\mathrm{E}}\left(\mathrm{x}_{3}, \mathrm{x}_{5}\right)
$$

Factor Graphs

$$
p(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

Inferences on factor graphs

- Efficient inference algorithms for factor graphs built for trees [Frey, 1998; Kschischnang et al., 2001] :
- Sum-product algorithm
- Max product algorithm

Inferences

Last lecture:

- Exact inferences on chains and trees
- Factor graph representation and inference on factor graphs

Open question:

- Exact inferences on arbitrary MRFs and BBNs

Clique tree algorithm:

- Clique tree $=$ Junction tree $=$ tree decomposition of the graph

Tree decomposition of the graph

- A tree decomposition of a graph G:
- A tree T with a vertex set associated to every node.
- For all edges $\{v, w\} \in \mathrm{G}$:
 there is a set containing both v and w in T.
- For every $v \in \mathrm{G}$: the nodes in T that contain v form a connected subtree.

Conversion of the BBN and MRF to a Clique tree

MRF conversion:

Option 1:

- Via triangulation to form a chordal graph
- Cliques in the chordal graph define the clique tree

Option 2:

- from the induced graph built by running the variable elimination procedure
- Cliques are factors generated during the procedure

BBN conversion:

- Convert the BBN to an MRF - a moral graph
- Apply MRF conversion

Clique tree algorithms

- We have precompiled a clique tree.
- So how to take advantage of the clique tree to perform inferences?

VE on the Clique tree

- Variable Elimination on the clique tree
- works on factors
- Makes factor a data structure
- Sends and receives messages

Clique tree properties

- Running intersection property
- if C_{i} and C_{j} both contain a vertex X , then all cliques on the unique path between them also contain X
- Sepset $S_{i j}=C_{i} \cap C_{j}$
- separation set: Variables \mathbf{X} on one side of sepset are separated from the variables \mathbf{Y} on the other side in the factor graph given variables in \mathbf{S}

Clique trees

- Running intersection:
E.g. Cliques involving G form a connected subtree.

Clique trees

- Sepsets: $S_{i j}=C_{i} \cap C_{j}$
- Variables \mathbf{X} on one side of a sepset are separated from the variables \mathbf{Y} on the other side given variables in \mathbf{S}

Clique trees

Initial potentials :

Assign factors to cliques and multiply them.

$p(C, D, G, I, S, J, L, K, H)$
$=\pi^{0}(C, D) \pi^{0}(G, I, D) \pi^{0}(G, S, I) \pi^{0}(G, J, S, L) \pi^{0}(S, K) \pi^{0}(H, G, J)$

Message Passing VE

- Query for P(J)
- Eliminate C:

Message received at [G,I,D] --
[G,I,D] updates:

Message sent

 from [C,D]
$\pi_{2}[G, I, D]=\tau_{1}(D) \times \pi_{2}^{0}[G, I, D]$

Message Passing VE

- Query for P(J)
- Eliminate D: $\tau_{2}(G, I)=\sum_{D} \pi_{2}[G, I, D]$

$\pi_{3}[G, S, I]=\tau_{2}(G, I) \times \pi_{3}^{0}[G, S, I]$

Message Passing VE

- Query for P(J)
- Eliminate I: $\tau_{3}(G, S)=\sum_{I} \pi_{3}[G, S, I]$

Message sent from [G,S,I] to [G,J,S,L]

Message received at [G,J,S,L] -[$\mathbf{G}, \mathbf{J}, \mathbf{S}, \mathrm{L}]$ updates:

S,K

$$
\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \pi_{4}^{0}[G, J, S, L]
$$

$$
\square
$$

[G,J,S,L] is not ready!

Message Passing VE

- Query for P(J)
- Eliminate $\mathrm{H}: \tau_{4}(G, J)=\sum_{H} \pi_{5}[H, G, J]$

$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \pi_{4}^{0}[G, J, S, L]$ And ...

Message Passing VE

- Query for P(J)
- Eliminate K: $\quad \tau_{6}(S)=\sum_{K} \pi^{0}[S, K]$

Message sent from [S,K] to [G,J,S,L]
$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \tau_{6}(S) \times \pi_{4}^{0}[G, J, S, L]$
And calculate $\mathbf{P (J)}$ from it by summing out $\mathbf{G}, \mathbf{S}, \mathrm{L}$

Message Passing VE

- [G,J,S,L] clique potential
- ... is used to finish the inference

Message passing VE

- Often, many marginals are desired
- Inefficient to re-run each inference from scratch
- One distinct message per edge $\&$ direction
- Methods :
- Compute (unnormalized) marginals for any vertex (clique) of the tree
- Results in a calibrated clique tree $\sum_{C_{i}-S_{i j}} \pi_{i}=\sum_{C_{j}-S_{i j}} \pi_{j}$
- Recap: three kinds of factor objects
- Initial potentials, final potentials and messages

Two-pass message passing VE

- Chose the root clique, e.g. [S,K]
- Propagate messages to the root

Two-pass message passing VE

- Send messages back from the root

CS 3750 Advanced Machine Learning

Message Passing: BP

- Belief propagation
- A different algorithm but equivalent to variable elimination in terms of the results
- Asynchronous implementation

Message Passing: BP

- Each node: multiply all the messages and divide by the one that is coming from node we are sending the message to - Clearly the same as VE

$$
\delta_{i \rightarrow j}=\frac{\sum_{C_{i}-S_{i j}} \pi_{i}}{\delta_{j \rightarrow i}}=\frac{\sum_{C_{i}-S_{i j}} \pi_{i}^{0} \prod_{k \in N(i)} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}=\sum_{C_{i}-S_{i j}} \pi_{i}^{0} \prod_{k \in N(i) \backslash j} \delta_{k \rightarrow i}
$$

- Initialize the messages on the edges to 1

Message Passing: BP

 each passing message by the last stored.
$\pi_{3}(C, D)=\pi_{3}^{0}(C, D) \frac{\delta_{2->3}}{\mu_{2,3}}=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C)$
$\mu_{2,3}=\delta_{2 \rightarrow 3}=\left(\sum_{B} \pi_{2}^{0}(B, C)\right) \quad$ New message stored

Message Passing: BP

Store the last message

$$
\pi_{3}(C, D)=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C)=\pi_{3}^{0}(C, D) \mu_{2,3}
$$ on the edge and divide each passing message by the last stored.

$$
\delta_{3>2}=\left(\sum_{D} \pi_{3}(C, D)\right)
$$

$$
\begin{aligned}
& \pi_{2}(B, C)=\pi_{2}^{0}(B, C) \frac{\delta_{3>2}}{\mu_{2,3}(C)}=\frac{\pi_{2}^{0}(B, C)}{\mu_{2,3}(C)} \times \sum_{D} \pi_{3}^{0}(C, D) \times \mu_{2,3}(C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D) \\
& \mu_{2,3}=\delta_{3->2}=\left(\sum_{D} \pi_{3}(C, D)\right)=\sum_{D} \pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C) \quad \text { New message }
\end{aligned}
$$

Message Passing: BP

$\pi_{2}(B, C)=\pi_{2}^{0}(B, C) \times \sum \pi_{3}^{0}(C, D) \quad$ The same as before
$\pi_{2}(B, C)=\pi_{2}(B, C) \frac{\delta_{3 \rightarrow 2}}{\mu_{2,3}(C)}=\pi_{2}(B, C) \times \frac{\sum_{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}{\sum_{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}=\pi_{2}(B, C)$

Loopy belief propagation

- The asynchronous BP algorithm works on clique trees
- What if we run the belief propagation algorithm on a non-tree structure?

- Sometimes converges
- If it converges it leads to an approximate solution
- Advantage: tractable for large graphs

Loopy belief propagation

- If the BP algorithm converges, it converges to an optimum of the Bethe free energy
See papers:
- Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief Propagation, 2000
- Yedidia J.S., Freeman W.T. and Weiss Y. Understanding Belief Propagation and Its Generalizations, 2001

