CS 3750 Machine Learning Lecture 3

Graphical models: inference

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Factors

- Factor: is a function that maps value assignments for a subset of random variables to \mathfrak{R} (reals)
- The scope of the factor:
- a set of variables defining the factor
- Example:
- Assume discrete random variables x (with values a1,a2, a3) and y (with values b1 and b2)
- Factor:

$$
\phi(x, y) \longrightarrow
$$

- Scope of the factor:

$$
\{x, y\}
$$

a 1	b 1	0.5
a 1	b 2	0.2
a 2	b 1	0.1
a 2	b 2	0.3
a 3	b 1	0.2
a 3	b 2	0.4

Factor Product

Variables: A,B,C
$\phi(A, B, C)=\phi(B, C) \circ \phi(A, B)$
$\phi(B, C)$
$\phi(A, B)$

b1	cl	0.1
b 1	c 2	0.6
b 2	cl	0.3
b 2	c 2	0.4

a1	b1	0.5
a1	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

$$
\phi(A, B, C)
$$

a1	b1	c1	$0.5^{*} 0.1$
a1	b1	c2	$0.5^{*} 0.6$
a1	b2	c1	$0.2^{*} 0.3$
a1	b2	c2	$0.2^{*} 0.4$
a2	b1	c1	$0.1^{*} 0.1$
a2	b1	c2	$0.1^{*} 0.6$
a2	b2	c1	$0.3^{*} 0.3$
a2	b2	c2	$0.3^{*} 0.4$
a3	b1	c1	$0.2^{*} 0.1$
a3	b1	c2	$0.2^{*} 0.6$
a3	b2	c1	$0.4^{*} 0.3$
a3	b2	c2	$0.4^{*} 0.4$

Factor Marginalization

Variables: A,B,C $\phi(A, C)=\sum_{B} \phi(A, B, C)$

a1	b1	c1	0.2
a1	b1	c2	0.35
a1	b2	c1	0.4
a1	b2	c2	0.15
a2	b1	c1	0.5
a2	b1	c2	0.1
a2	b2	c1	0.3
a3	b2	c2	0.2
a3	b1	c1	0.25
a3	b2	c1	0.45
a3	b2	c2	0.15

Factor division

$\mathrm{A}=1$	$\mathrm{~B}=1$	0.5
$\mathrm{~A}=1$	$\mathrm{~B}=2$	0.4
$\mathrm{~A}=2$	$\mathrm{~B}=1$	0.8
$\mathrm{~A}=2$	$\mathrm{~B}=2$	0.2
$\mathrm{~A}=3$	$\mathrm{~B}=1$	0.6
$\mathrm{~A}=3$	$\mathrm{~B}=2$	$\mathrm{~A}=1$
$\mathrm{~A}=2$	0.4	
$\mathrm{~A}=3$	0.4	

$\mathrm{A}=1$	$\mathrm{~B}=1$	$0.5 / 0.4=1.25$
$\mathrm{~A}=1$	$\mathrm{~B}=2$	$0.4 / 0.4=1.0$
$\mathrm{~A}=2$	$\mathrm{~B}=1$	$0.8 / 0.4=2.0$
$\mathrm{~A}=2$	$\mathrm{~B}=2$	$0.2 / 0.4=2.0$
$\mathrm{~A}=3$	$\mathrm{~B}=1$	$0.6 / 0.5=1.2$
$\mathrm{~A}=3$	$\mathrm{~B}=2$	$0.5 / 0.5=1.0$

Inverse of a factor product

Inferences

We have already seen VE inferences on both BBNs and MRFs

- Inference on chains and trees structures can be often done efficiently in time: linear in the number of nodes in the tree
chain tree

Inference on a Chain

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
\end{gathered}
$$

$$
\begin{aligned}
& p\left(x_{n}\right)= \frac{1}{Z} \underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right] \cdots\right]}_{\mu_{\alpha}\left(x_{n}\right)} \\
& \underbrace{\left.\left[\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots \sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{\beta}\left(x_{n}\right)}
\end{aligned}
$$

Inference on a Chain

$$
\begin{aligned}
\mu_{\alpha}\left(x_{n}\right) & =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\left[\sum_{x_{n-2}} \cdots\right] \\
& =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \mu_{\alpha}\left(x_{n-1}\right) \\
\mu_{\beta}\left(x_{n}\right) & =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right)\left[\sum_{x_{n+1}} \cdots\right] \\
& =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

Inference on a Chain

$$
\begin{gathered}
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right) \\
Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
\end{gathered}
$$

Inference on a Chain

To compute local marginals:

- Compute and store all forward messages, $\mu_{\alpha}\left(x_{n}\right)$.
- Compute and store all backward messages, $\mu_{\beta}\left(x_{n}\right)$.
- Compute Z at any node x_{m}
- Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required.

Trees

Undirected Tree

Directed Tree

Polytree

Factor graph

A graphical representation that lets us express a factorization of a function over a set of variables
A factor graph is bipartite graph where:

- One layer is formed by variables
- Another layer is formed by factors or functions on subsets of variables
Example: a function over variables $x_{1}, x_{2}, \ldots x_{5}$

$$
g\left(x_{1}, x_{2}, \ldots x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right)
$$

CS 3750 Advanced Machine Learning

Factor Graphs

$$
p(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)
$$

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

Inferences on factor graphs

- Efficient inference algorithms for factor graphs built for trees [Frey, 1998; Kschischnang et al., 2001] :
- Sum-product algorithm
- Max product algorithm

The Sum-Product Algorithm (1)

Objective:
i. to obtain an efficient, exact inference algorithm for finding marginals;
ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

$$
a b+a c=a(b+c)
$$

The Sum-Product Algorithm (2)

The Sum-Product Algorithm (4)

$$
F_{s}\left(x, X_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{M}\right) G_{1}\left(x_{1}, X_{s 1}\right) \ldots G_{M}\left(x_{M}, X_{s M}\right)
$$

The Sum-Product Algorithm (5)

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x}\left[\sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)\right] \\
& =\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

The Sum-Product Algorithm (6)

$$
\begin{array}{ll}
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right) & =\sum_{X_{s m}} \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m l}\right) \\
& \prod_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
\end{array}
$$

The Sum-Product Algorithm (7)

Initialization

The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

