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Generative Modeling
• Input is Training examples and output is 

some representation of probability 
distribution which defines this example 
space. 

• Un-Supervised
Data – X 
Goal – Learn Hidden structure of data

• Supervised
Data – X , y
Goal – Learn mapping from X -> Y
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Figure from Dr. Fei-Fei Li slides

Sample Generation

Training Examples Generated  Samples
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 Simulated DataNoisy Input
Features
Representative 
of Data

Missing Data
Prediction of 
Future State

Semi-Supervised 
Learning



Maximum Likelihood based Models
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P(x) 

Maximum likelihood  tries increase the 
likelihood of data given  the parameters
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Tractable Model  - PixelRNN / PixelCNN / 
WaveNet
Fully visible belief Network

• Generate image pixels from corner

• Training Faster

• Generation Slow / Sequential

• Cannot generate samples based on 
some latent code
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Maximum Likelihood based Training

Chain Rule
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Non Tractable Model  - Variational 
Approximation
Variational Auto-encoder

 

 

• Model is able to achieve high 
likelihood

• Model is not asymptotically 
consistent unless q is perfect

• Samples tend to have lower quality
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Non Tractable Model  - MCMC Approximation
Boltzmann Machine

 

 

• Energy Function based models
• Markov chains don’t work for long 

sequences
• Hard to scale on large dataset
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Where do GANs fall ?

•Can Use Latent Information while sample generation
•Asymptotically consistent ( claims to recover true 
distribution) 

•No Markov Chain assumption
•Samples produced are high quality
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Generated Samples - GAN
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Next Video Frame Prediction
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• Sharp image
• Better estimation of Ear 

position
• Much crisp eyes



Generative Adversarial Networks
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Generator Discriminator



Generative Adversarial Networks
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Classic GAN Framework

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Z – random Noise  
(latent representation of data)
Zd <= Xd

 

 

 



Training Discriminator
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https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

 

 



Training Generator
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https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

 

 

 



Mini-max Game Approach
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• Generator minimizes the log-probability of the discriminator being correct
• Resembles Jensen-Shannon divergence
• Saddle Point  of discriminators loss

Discriminator output for 
real data x

Discriminator output for 
fake data G(z)



Mini-max Game Approach
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• Generator minimizes the log-probability of the discriminator being correct
• Resembles Jensen-Shannon divergence
• Saddle Point  of discriminators loss

  

 

Nash Equilibrium / Saddle Point



Vanishing Gradient Problem with Generator
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Gradient goes to 0 if D is confident , ie  D(G(z)) -> 0 

As can be seen that whenever the 
discriminator becomes very confident the 
loss value will be zero 

Nothing to improve for Generator



Heuristic Non Saturating Game
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Generator maximizes the log probability of the discriminator’s mistake

Does not change when discriminator is successful



Comparison of Generator Losses

• Generators cost is a function D(G(z))
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Able to learn even if the 
Gradient signal is low
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https://www.youtube.com/watch?v=mObnwR-u8pc

https://www.youtube.com/watch?v=mObnwR-u8pc


Why GAN are hard to train ?
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Non-Convergence 
D & G nullifies each others learning in every iteration

Train for a long time – without generating good quality samples
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• Differential Equation’s solution has sinusoidal 
terms

• Even with a small learning rate, it will not 
converge

• Discrete time gradient descent can spiral 
outward for large step size

 

 
 

 

 

 

 

 



Mode Collapse
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http://www.youtube.com/watch?v=ktxhiKhWoEE&t=0m30s

Unroll GAN

GAN

Generator excels in a subspace but 
does-not cover entire real distribution

Sample
Coverage

Sample
Accuracy

Luke et al. 2016

http://www.youtube.com/watch?v=ktxhiKhWoEE&t=0m30s


Why GAN are hard to train ?

• Generator keeps generating similar images – so nothing to learn

• Maintain trade-off of generating more accurate vs high coverage samples

• The two learning tasks need to have balance to achieve stability

• If Discriminator is not sufficiently trained – it can worse generator

• If Discriminator is over-trained  - will produce no gradients
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Tricks to Train GAN

• One sided label smoothing
• Historical generated batches
• Feature Matching
• Batch Normalization
• Regularizing discriminator gradient in region around real data 

(DRAGAN)
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One Side Label Smoothening

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural 
Information Processing Systems. 2016.

• Generator is very sensitive to 
Discriminators output

• Prevents discriminator to give 
high gradients

• Does-not reduce accuracy.
• Increase confidence
• Only smooth positive samples
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Historical generated batches

Help stabilize discriminator training at early stages
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Shrivastava, Ashish, et al. "Learning from Simulated and Unsupervised Images through Adversarial Training." CVPR. Vol. 2. No. 4. 2017.

Don’t Let discriminator 
forget what it already 
learned



Feature Matching
• Generated images must match 

statistics of real images
•  Discriminator defines the statistics 
• Generator is trained such that the 

expected value of statistics 
matches the expected value of real 
statistics 

• Generator tries to minimize the L2 
distance in expected values in 
some arbitrary space 

• Discriminator defines that arbitrary 
space 
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Batch Normalization
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• Construct different mini-batches 
for real and fake 

•  Each mini-batch needs to 
contain only all real images or all 
generated images.

• Makes samples with-in a batch 
less dependent



DRAGAN

• Failed GANs typically have extreme gradients/sharp peaks around 
real data 

• Regularize GANs to reduce the gradient of the discriminator in a 
region around real data 
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Few variations of GAN

• Conditional GAN
• LapGAN
• DCGAN
• CatGAN
• InfoGAN
• AAE
• DRAGAN
• IRGAN
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Mirza, M. and Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

 

• Generator Learns P (X | Z, Y)
• Discriminator Learns P (L | X,Y)
• Much better samples
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DCGAN
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Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks."  (2015).

• Multiple Convolutional Layers
• Batch Normalization
• Strides with Convolution
• Leaky ReLUs



DCGAN
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Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks."  (2015).



InfoGAN

• Rewards Disentanglement – ( individual dimensions capturing key 
attributes of images)

• Z – partitioned into two parts
 z – capture slight variation in the images
 y – captures the main attributes of the images

Mutual Information – maximizing mutual information
Between the code and generator output
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InfoGAN
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BiGANs

• Encoder
• Decoder
• Discriminator 
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LapGANs
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Denton EL, Chintala S, Fergus R. Deep generative image models using a￼ laplacian pyramid of adversarial networks. NIPS 2015 (pp. 1486-1494).

• To Scale GAN for large image

• Laplacian pyramid function is 
used to generate different 
scales of image



LapGAN
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Denton EL, Chintala S, Fergus R. Deep generative image models using a￼ laplacian pyramid of adversarial networks. InAdvances in neural information processing 
systems 2015 (pp. 1486-1494).



DCGAN
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Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks."  (2015).

• Multiple Convolutional Layers
• Batch Normalization
• Strides with Convolution
• Leaky ReLUs
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Adversarial Autoencoder (GAN + VAE)
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GAN for Text

• GANs for Language Generation (Yu et al. 2017) 
• GANs for MT (Yang et al. 2017)
• GANs for Dialogue Generation (Li et al. 2016) 
• GANs for fake news detection (Yang et al. 2017) 
• GANs for Information Retrieval 
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GAN and RL connection

• GANs – Inverse Reinforcement 
Learning

• GANs - Imitate Learning
• GANs – actor critic framework

• REINFORCE - Policy Gradient Based 
learning

• Gumbel Softmax
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Conclusion

• GAN is an active area of research
• GAN architecture is flexible to support variety of learning problems
• GAN does not guarantee to converge
• GAN is able to capture perceptual similarity and generates better 

images than VAE
• Needs a lot of work in theoretic foundation of Network
• Evaluation of GAN is still an open research (Theis et. al)
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Important Papers to dig into GAN
• NIPS 2016 Tutorial:  - Ian Goodfellow

• Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial 
networks." arXiv preprint arXiv:1701.04862 (2017).

• Roth, Kevin, et al. "Stabilizing training of generative adversarial networks through regularization." Advances 
in Neural Information Processing Systems. 2017.

• Li, Jerry, et al. "Towards understanding the dynamics of generative adversarial networks." arXiv preprint 
arXiv:1706.09884 (2017).

• Kodali, Naveen, et al. "On convergence and stability of GANs." arXiv preprint arXiv:1705.07215 (2017).

• Fedus, William, et al. "Many Paths to Equilibrium: GANs Do Not Need to Decrease aDivergence At Every 
Step." arXiv preprint arXiv:1710.08446 (2017).

• https://github.com/soumith/ganhacks#authors

• http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/

• https://www.araya.org/archives/1183
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https://arxiv.org/search/cs?searchtype=author&query=Goodfellow,+I
https://github.com/soumith/ganhacks#authors
http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/


Startup code, Tools and Tricks
• https://github.com/soumith/ganhacks#authors

• https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adver
sarial-networks-edd529764aa9

• https://jhui.github.io/2017/03/05/Generative-adversarial-models/
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https://github.com/soumith/ganhacks#authors
https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9
https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9
https://jhui.github.io/2017/03/05/Generative-adversarial-models/
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• Deep Learning Book
• GAN paper: https://arxiv.org/abs/1701.00160
• GAN slides: http://slazebni.cs.illinois.edu/spring17/lec11_gan.pd
• GAN Tutorial: https://www.youtube.com/watch?v=HGYYEUSm-0Q
• GAN for text: 

http://www.phontron.com/class/nn4nlp2017/assets/slides/nn4nlp-1
7-adversarial.pdf
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https://www.youtube.com/watch?v=HGYYEUSm-0Q
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http://www.phontron.com/class/nn4nlp2017/assets/slides/nn4nlp-17-adversarial.pdf
http://www.phontron.com/class/nn4nlp2017/assets/slides/nn4nlp-17-adversarial.pdf


Not the end..
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Thank You for Listening
Questions ?

Khushboo Thaker 57


