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Generative Models

Given training data, generate new samples from same distribution

CIFAR-10 dataset (Krizhevsky and Hinton, 2009)
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Training data ~ py.(X) Generated sampled ~ p,, o 4e(X)

Want to learn poqe/(X) similar to py,.(x)

Hung Chau Deep Generative Models

Why Generative Models?

Realistic samples for artwork, super-resolution, colorization, etc.

Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

Training generative models can also enable inference of latent
representation that can be useful as general features
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Taxonomy of Generative Models

Generative Models

Explicit density Implicit density

Tractable density Approximate density Markov Chain Direct

Fully visible belief nets GAN

- NADE

- MADE Variational Markov Chain

- PixelRNN/CNN

Change of variables Variational Autoencoder Boltzmann Machine

models (nonlinear ICA)

Hung Chau Deep Generative Models

Restricted Boltzmann
Machines (RBM)
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Restricted Boltzmann Machines

Many interesting theoretical results about undirected models depends on the assumption
that Vx, p(x) > 0. A convenient way to enforce this condition is to use an energy-based
model where

p(x) = exp(—E(x)) Remember: normalized probability distribution

1
* E(x) is known as the energy function p(x) = Eﬁ(x)

Any distribution of this form is an example of a Boltzmann distribution. For this reason,
many energy-based models are called Boltzmann machines.

6 Q O E(a, b, ¢, d, e, f) can be written as
Q e 0 Ea,b (alb) + Eb,c (b,C) + Ea,d (ald) + Eb,e (b,e) + Ee,f (e,f)

| ¢an(a,b) = exp(—E(a,b)|
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Restricted Boltzmann Machines

* Boltzmann machines were originally introduced as a general “connectionist” approach
to learning arbitrary probability distributions over binary vectors

* While Boltzmann machines were defined to encompass both models with and without
latent variables, the term Boltzmann machine is today most often used to designate
models with latent variables

1
Joint probability distribution: p(x, h) = Eexp(—E(x, h)

Energy function: E(x,h) = —xTRx — xTWh — hTSh — c"x — bTh
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Restricted Boltzmann Machines

* Restricted Boltzmann machines (RBMs) are undirected probabilistic graphical models
containing a layer of observable variables and a single layer of latent variables

* RBMis a bipartite graph, with no connections permitted between any variables in the
observed layer or between any units in the latent layer

Restricted Boltzmann machine Deep belief network Deep Boltzmann machine
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Restricted Boltzmann Machines

hidden |
[Q O O Q O] h — (I;inaerr; S:ZZ)
bias W «— connections
OLOOO) x — e

p(x,h) = exp(—E(x, h)) /Z 7 = Z exp(—E(x, h))
=exp(h"Wx + ¢"x+ bTh) /Z \ xh
= \exp(hTWx) exp(cTx) exp(bT h) /7

T
Factors

partition function (intractable)

The notation based on an energy function is simply an alternative to the representation
as the product of factors
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Restricted Boltzmann Machines

Pair-wise Factors

A
[ |
Hidden variables 1
p(x, h) = Ennele(W},khjxk)
wes j k
exp(crx
Bipartite 1:[ p( k k)
Structure Unary

Factors
[ [exw(tity)

J

Visible variables

The scalar visualization is more informative of the structure within the vectors
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RBM: Inference

Hidden variables

Restricted: No interaction between
hidden variables

Bipartite
Structure

Inferring the distribution over the
hidden variables is easy

Visible variables

p(hix) =] [pyi0
o

Factorizes: easy to compute
Similarly: Y P

pGxlh) = [pcaln)
k

Markov random fields, Boltzmann machines, log-linear models
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RBM: Inference

Conditional Distributions

COOOOO)h

OOQOQ) x

OO0 OO0

(clelelelolR:

p(hlx) = [pyi

’ 1

1+ exp (—(bj + Wj.x))
= sigm(b; + W;.x)

p(hy =1lx) =

jth row if W

p@xlh) = [pculn
k

1

P = 11h) = 1+ exp(—(cx + KT W)

= sigm(c + h" W.,)

kth column if W
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RBM: Free Energy

p(x) = p(x,h) =

he{o,1}H

j=1
= exp(~F(x))/Z

\

Free energy

What about computing marginal p(x)?

he{o,1}1

H
= exp ((:Tx + z log (1 + exp(b; + Wj.x))> /Z

exp(—E(x,h))/Z

(P®POO®] h

COOO0) x
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RBM: Free Energy

What about computing marginal p(x)?

p(x) = Z exp(h"Wx + c"x +b"h)/Z
hefo,1}

= exp(c™x) Z Z exp<2hiwj.x+bjhj)/z
J

hi€{0,1} hy€0,1}

= exp(ch)< Z exp(hyWy.x + b1h1)> ( Z exp(hyWy.x + thH)) /Z
h,€{0,1} hyefo,1}

=exp(c"x)(1 + exp(b; + W1.%)) ...(1 + exp(by + Wy.x))/Z

= exp(cTx)exp(log(1 + exp(by + W;.x))) ...exp(log((1 + exp(by + Wy.x)))/Z

H
= exp (ch + Z log (1 + exp(b; + W,-x))) /Z

Jj=1

Also known as Product of Experts model
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RBM: Free Energy

(BE®OEO®)] h

H
p(x) =exp| cTx+ Z log (1 + exp(bj + W]-.x)) /Z
=

©OOOJ) x

H
=exp| cTx+ Z softplus(b; + W;.x) | /Z

=1
. softplus(-)

bias of the bias of each feature 3
probability of feature expected in x )
each x;

-5 -4 -3 -2 -1 0 1 2 3 4
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RBM: Model Learning

Hidden variables

Given a set of i.i.d. training examples we want to
minimize the average negative log-likelihood:

%Z}U@%=%Z—bwu®

Remember:
Visible variables logp(x(t)) = log (Zp(x(t)’h)>
Derivative of the negative log-likelihood objective | " exp(—E(x®, b))
(stochastic gradient descent): -8 Z Z
9 —logp(x®) _ OE(x, h) © JE(x, h) = log( exp(—E(x(t),h))> —logZz
20 =B |5 X7 T Exn |5 o

)
T T
Negative phase
Hard to com pute Restricted Boltzmann machines Tutorial - Chris Maddison
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Positive phase

RBM: Contrastive Divergence

Key idea behind Contrastive Divergence:

* Replace the expectation by a point estimate at X
* Obtain the point X by Gibbs sampling
« Start sampling chain at x(®

(elelelolele) (ololelelele)

~M?/aw®\\/// \\\

[QOCBQQ] [QOCl)Q ] [OOCl) @)

x® x! xk =g _
— negative sample
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RBM: Contrastive Divergence

Intuition: 9 —logp(x®) 0E (x®, h) 0E(x, h)
=F T |x®| = Eyp

26 ok 26
OE(x®, h) ® OE (x(O, h(®) dE(x,h)] OE®h)
h —lx Sy e— Ex,h ~
26 26 a0 a0
' E(x.h)
(x"") ht) (%.h)

Hung Chau Deep Generative Models

RBM: Contrastive Divergence

Intuition: @ —logp(x®) 9E(xD, h) 9E(x, h)
=E, |x(t) _Ex,h -~ 7

26 a0 20
OE(x®, h) . IE (x®, p®) 0E(x,h)] OE(% h)
Enl=g  *7|* 29 Exn| =20 | ® a0

p(x,h)
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RBM: Deriving Learning Rule

N OE(x,h
Let us look at derivative of % for 6 = Wy
OE(x,h)
20 = 6W]k <_jzkvvj'khjxk —ZCkxk —ijh])

d
N _am,(zv‘/f"‘hka Remember:
Tk E(x,h) = —h"TWx — ¢"x — bTh

= —hjxk

Hence:
VwE(x, h) = —hxT
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RBM: Deriving Learning Rule

JE (x,h) |x]

Let us now derive [Ep, [ py

OE(x, h)
n | x| = Eal-hxida] = ) —hpxp(hylx)
W, .
! hjE{O,l}
= —xkp(hj = 1|x)
_ (p(hy = 1]x)
Hence: 9= (7 1)

En[VwE(x, h)|x] = —h(x)x" = sigm(b + Wx)

Hung Chau Deep Generative Models
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RBM: Deriving Learning Rule
NG ¥ 6=wW
Wew - a(Vy —logp(x®))
=W — a(Ey[VwE(x®,h)|x®] - E, [V E (x, 1)])
=W — a(E[VwE(x®, h)[x®] - E,[VwE %, h)|%])

=w+ a(h@x®)x®" - h(D)E")

Learning rate
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RBM: CD-k Algorithm

For each training example x®

» Generate a negative sample X using k steps of Gibbs sampling,
starting at the data point x®

» Update model parameters:
Wew+ a(h@x©)x®" - @3z
b=b+ a(h(x?) —h(®))
c=c+ a(x® —x)

» Go back to the first step until stopping criteria

Hung Chau Deep Generative Models
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RBM: CD-k Algorithm

* CD-k: contrastive divergence with k iterations of Gibbs sampling

* Ingeneral, the bigger k is, the less biased the estimate of the
gradient will be

* In practice, k = 1 works pretty well for learning good features and
for pre-training

Hung Chau Deep Generative Models

RBM: Persistent CD: Stochastic ML Estimator

* |dea: instead of initializing the chain of x® initialize the chain to
the negative sample of the last iteration

(clolelelol®) : CO0000)
~p(h|V NMN / \ /
[OQCBQO] OQCBOQ] OQClD O

x(® x! =

negatlve sample

X \ comes from the

previous iteration
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Variational
Autoencoders (VAE)

Hung Chau Deep Generative Models

Autoencoders (Recap) Reconstructed data

Unsupervised approach for learning a lower-dimensional feature
representation from unlabeled training data

Reconstructed = Originally: Linear + P ————
input data X nonlinearity (sigmoid)
Later: Deep, fully-connected Encoder - Decoder
Decoder Later: ReLU CNN (upconv)
Input data
Features VA
Encoder
Input data X

Hung Chau Deep Generative Models
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Autoencoders (Recap) Reconstructed data
Doesn’t use labels! o e
Train a model such that L2 Loss function
features can be used to S
reconstruct original data llx — %]
Reconstructed ~
input data X
Encoder - Decoder
Decoder
Input data
Features A
Encoder
Input data x

Hung Chau Deep Generative Models

Autoencoders (Recap)

bird plane
Loss function panther truck dog
(Softmax, etc) Wi e

Predicted label 5} y
Classifier
Encoder can be used Fine-tune
to initialize a Features Z encoder
supervised model jointly with
Encoder classifier
Input data X

Hung Chau Deep Generative Models
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Autoencoders (Recap)

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed

Features capture factors of

input data X variation in training data. Can
we generate new data from an
Decoder autoencoder?
Features VA
Encoder
Input data X
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Variational Autoencoders

representation Z

Sample from

true conditional X
pe- (x| z)

Sample from

true prior 7
pe-(2)

Hung Chau Deep Generative Models

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

N
Assume training data {x(‘)}izl is generated from underlying unobserved (latent)

Intuition: x is an image, z is latent
factors used to generate x: attributes,
orientation, etc.

16
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Variational Autoencoders

We want to estimate the true parameters
6" of this generative model

Sample from How should we represent this model?
true conditional X
pe- (¥ 2) Choose prior p(z) to be simple, e.g. Gaussian
Decoder
network
Sample from Conditional p(x|z) is complex (generates
true prior 7 image) => represent with neural network
pe-(2)

Hung Chau Deep Generative Models

Variational Autoencoders

We want to estimate the true parameters
6" of this generative model

Sample from How train this model?
true conditional X
po-(¥1 2)) Learn model parameters to maximize
Decoder likelihood of training data
network
Sample from
true prior . pe(x) = fpe (2)pg (x|2)dz
re-(2)

Hung Chau Deep Generative Models
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Variational Autoencoders

Data likelihood: ps(x) = f po (D)pe (x|2)dz

Intractable to compute
p(x|z) for every z!

po (x|2)py(2)

Posterior density also intractable: pg(z|x) = o)

Solution: in addition to decoder network modeling py(x|z), define additional
encoder network g4(z|x) that approximates pg(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Hung Chau Deep Generative Models

Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z|x Mean and (diagonal) covariance of x|z

Encoder network Decoder network
de(z|x) pe(x12)
(parameter ¢) (parameter 6)
| x | | z |
Hung Chau Deep Generative Models
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Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|x~N(,uZ|x, Zz|x) Sample x|z from x|z~N(ux|Z, 2x|2)

Encoder network Decoder network
Clq,(z |x) Pe(x]2)
(parameter ¢) (parameter 6)
| x | | z |

Hung Chau Deep Generative Models

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

logpe(x®) = Ez~q¢(zlx(i))[logpg(x(i))] (pa(x?) does not depend on 2)
pe(x®2)pe(2) ,
= LLANMINL LA Bayes’ Rule
E, [log Vo (lem) (Bay: )

pe(xD2)pe(2) 4o (z|xD) .
=E,|l - - Multipl tant
z [ og PeEx®)  qy(zlx®) (Multiply by constant)
@ (O]
. e (z|x@) e (z]|x@) .
=E,[l ® —E, [log=2"" 2| + E, |log—2~— 2 Logarithms
2[logpe (x?|2)] z[og 2 2|log | (o8 )

= E,[logpe(xV|2)| — Dk1(ay(z]xD)|Ipe(2)) + Dir (a4 (z|xD)1Ipg (21x D))

Decoder network gives pg(x|z), This KL term (between Gaussians pe(z|x) intractable (saw earlier),
can compute estimate of this for encoder and z prior) has nice can’t compute this KL term. But we
term through sampling closed-form solution! know KL divergence always >= 0.

Hung Chau Deep Generative Models
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(x®) = Ez~q¢(zlx(i))[lnge(x(i))] (pe(x®) does not depend on z)
po(xV)2)py (2) ,
=E, |log—————= Bayes’ Rule
‘ [ 8 peGlx®) (Bay )

po(xD|2)pe(2) qp(z]x®) .
=E,|(l - - Multiply b tant
z[og e ®)  4y(zlx®) (Multiply by constant)
() ()
. e (z|x@) e (z|x@) )
=E,[l ®|2)] —E [1 " 2| 4+E,|log————=| (Logarithms)
o[1ogpo (xO12)] 2% pe@ |7 B pe k@)

|Ez[logpe(x(")IZ)] - DKL(QdJ(le(i))”pG(Z))“l' ];)KL(Q(p(le(i))l|p9(zlx(i)))l

T T
L(xD,0,¢) >0

Tractable lower bound which we can take gradient of and
optimize! (pg(x|z) differentiable, KL term differentiable)

Hung Chau Deep Generative Models

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(x®) = Ez~q¢(z|x(i))[108Pe(x(i))] (pe(x®) does not depend on z)
po(xV)2)py (2) ,
= LA S P L Bayes’ Rule
E, [log WETI0) (Bay: )

pe(xD2)pe(2) 4o (z|xD) .
=E,|[I - - Multiply b tant
z [ og pg(le(L)) Q¢(Z|X(L)) ( ultiply by constan )
: qp(2[x®) qp(2[x®) .
=E,[l ® —E,|loge——"2| +E, [log———~ Logarithms
Z[ nge(x |Z)] z [ 0og pQ(Z) z |108 Do (le(l.)) ( g )

= Ex[logpo(xV12)] — Dicu (5 (2]x)llpe (2)) + Diu (a9 (2 ®) 1o (21x )

T T
L(xD,0,¢) >0
N
logpe (x©) = £(x©, 6, ¢) 0",¢" = argmax > £(x0,6,4)
- “ ” i=1
Variational lower bound (“ELBO”) Training: Maximize lower bound

Hung Chau Deep Generative Models
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E,[logpe (x©12)] — Dics (a9 (2[x ) 11po ()

T
L(x®,6,¢)

Hung Chau Deep Generative Models

Variational Autoencoders
Putting it all together: maximizing the
likelihood lower bound
E,[10g s (+?12)] — Dis (0 (2] )l1po 22)
T
L(xD,0,¢)
Sample z from z|x~N(,uZ|x, Zz|x)
Encoder network
de(z|x)
Input data | X |
Hung Chau Deep Generative Models
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E,[logpe (x©12)] — Dics (a9 (2[x ) 11po ()

T
L(x®,6,)

Hung Chau

Encoder network
Ae(zx)
Input data ‘ X ‘

Deep Generative Models

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

‘Ez[log pe(x9)2)] — Dk1(qe(2]xD)]Ipe @)

T
L(xD,6,)

Hung Chau

Sample z from z|x~N(,uZ|x, Zz|x)

Encoder network
de(z|x)
Input data ‘ X ‘

Deep Generative Models
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

® _ ®
E,[logpg (x©)12)] L?KL(qd,(zlx Nlipe(2))
L(xD,0,$) Decoder network
Pe(x|2) ‘

z |
Sample z from z|x~N(uZ|x, Zz|x)

Encoder network
Ae(zx)
Input data ‘ X ‘

Hung Chau Deep Generative Models

Variational Autoencoders

| % |
Putting it all t T maximizing the c'\)’]'f:)xr'lm'zel"ke"hoo‘j Sample x|z from x|z~N (tix|z Zx|z)
likelihoge-fower bound bemgngZ:o;\nsgrL:Jtcted
E,[logpg (xV12)] — Dicu (a9 (2]x)lIpe () ﬁ' }
T
LxD,0,¢) Decoder network
pe(x|2) ‘ 7 ‘

Sample z from z|x~N(,uZ|x, Zz|x)

Encoder network
de(z|x)
Input data ‘ X ‘

Hung Chau Deep Generative Models
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Variational Autoencoders

Use decoder network. Now sample z from prior!

| X |

X

Sample x|z from x|z~N(ux|Z, 2x|z)

Decoder network

Pe(x|2) | . |

Sample z from z~N'(0,1)

Hung Chau Deep Generative Models

Variational Autoencoders

Diagonal prior on z Degree of smile
=> independent
latent variables

Different dimensions

of z encode Vary z, 35‘

interpretable factors
of variation

Hung Chau Deep Generative Models
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Variational Autoencoders

Diagonal prior on z Degree of smile
=> independent
latent variables

Different dimensions

of z encode Vary z,
interpretable factors

of variation

™

Also good feature representation that
can be computed using q,(z|x)!

Vary z
2 7T Head pose

Hung Chau Deep Generative Models

Variational Autoencoders: Generating Data

32x32 CIFAR-10

Figures (L) from Dirk Kingma et al. 2016; (R) from Anders Larsen et al. 2017

Hung Chau Deep Generative Models
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data

Pros:

- Principled approach to generative models

- Allows inference of q(z|x), can be useful feature representation for other tasks
Cons:

- Maximizes lower bound of likelihood: okay

- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of
diagonal Gaussian

- Incorporating structure in latent variables

Hung Chau Deep Generative Models

Tools

Python library for Bernoulli Restricted Boltzmann Machines: sklearn.neural_network.BernoulliRBM
Python Keras for Variational auto-encoder
Generative models (including RBM and VAE): https://github.com/wiseodd/generative-models
Variational Auto-encoder:

* Tutorials: http://pyro.ai/examples/vae.html

* Codes: https://github.com/uber/pyro/tree/dev/examples/vae

Hung Chau Deep Generative Models
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