
11/19/2018

1

Convolutional Neural Networks

Presented by: Ke Yu

11/13/2018

Outline

• Neural networks recap

• Building blocks of CNN

• Architectures of CNN

• Visualizing and understanding CNN

• More applications

11/19/2018

2

Neural Networks Recap

Multilayer Perceptron (MLP)

Fully-connected (FC) layer

• A layer has full connections to all activations in the previous layer

𝑋

𝑥1

𝑥2

𝑥3

𝑎[1] 𝑎[2]

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

𝑎1
[2]

𝑎2
[2]

𝑎3
[2]

𝑎4
[2]

ො𝑦

𝑊 [1]

𝑏[1]

𝑊 [2]

𝑏[2] 𝑊 [3]

𝑏[3]

𝑓

𝑎[1] = 𝜎 (𝑊[1]𝑋 + 𝑏[1])

𝑊 [1]~ 4,3 , 𝑋~ 3,𝑚 , 𝑎[1]~(4,𝑚)

𝑎[2] = 𝜎 (𝑊[2]𝑎[1] + 𝑏[2])

𝑊 [2]~ 4,4 , 𝑎[1]~ 4,𝑚 , 𝑎[2]~(4,𝑚)

ො𝑦 = 𝑓 (𝑊[3]𝑎[2] + 𝑏[3])

𝑊 [3]~ 1,4 , 𝑎[2]~ 4,𝑚 , ො𝑦~(1,𝑚)

11/19/2018

3

Activation Functions

a

x

x

a

x

a

x

a

𝜎 𝑥 =
1

1 + 𝑒−𝑥 𝑡𝑎𝑛ℎ 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

𝑅𝑒𝐿𝑈:max 0, 𝑥
𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈:max 0.1𝑥, 𝑥

Compute Gradients

𝑧[1] = 𝑊[1]𝑥 + 𝑏[1]

𝑥

𝑊[1]

𝑏[1]

𝑎[1] = 𝜎(𝑧[1]) ℒ(ො𝑦, y)𝑧[2] = 𝑊[2]𝑎[1] + 𝑏[2] ො𝑦 = 𝜎(𝑧[2])

𝑊[2] 𝑏[2]

ℒ ො𝑦, y = −(𝑦 log ො𝑦 + 1 − 𝑦 log(1 − ො𝑦))

𝑑[ො𝑦] =
𝑑ℒ

𝑑 ො𝑦
= −

𝑦

ො𝑦
+
1 − 𝑦

1 − ො𝑦

𝑑[𝑧 2] =
𝑑ℒ

𝑑 ො𝑦

𝑑 ො𝑦

𝑑𝑧[2]
= ො𝑦 − 𝑦

𝑑[𝑊 2] =
𝑑ℒ

𝑑 ො𝑦

𝑑 ො𝑦

𝑑𝑧 2

𝑑𝑧 2

𝑑𝑊 2
= 𝑑[𝑧 2]𝑎 1 𝑇

𝑑[𝑏[2]] =
𝑑ℒ

𝑑 ො𝑦

𝑑 ො𝑦

𝑑𝑧[2]
𝑑𝑧[2]

𝑑𝑏 2
= 𝑑[𝑧 2]

𝑑 𝑧 1 = 𝑑[𝑎[1]]
𝑑𝑎[1]

𝑑𝑧 1
= 𝑊 2 𝑇𝑑[𝑧 2] ∗ 𝜎′(z 1)

𝑑[𝑎[1]] = 𝑑[𝑧 2]
𝑑𝑧 2

𝑑𝑎 1
= 𝑊 2 𝑇𝑑[𝑧 2]

𝑑𝑊 [1] = 𝑑[𝑧[1]]
𝑑𝑧[1]

𝑑𝑊 1
= 𝑑[𝑧[1]]𝑥𝑇

𝑑𝑏[1] = 𝑑[𝑧[1]]
𝑑𝑧[1]

𝑑𝑊 1
= 𝑑[𝑧[1]]

11/19/2018

4

Backpropagation Algorithm

1.The network is initialized with randomly chosen weights

2.Implement forward propagation to get all intermediates 𝑧[𝑙], 𝑎[𝑙]

3.Compute cost function 𝐽 𝑊, 𝑏

4.Network back propagates the error and calculates the gradients

5.Adjust the weights of the network
𝑊[𝑙]: = 𝑊[𝑙] − 𝛼 ∙ 𝑑[𝑊[𝑙]]

𝑏[𝑙]: = 𝑏[𝑙] − 𝛼 ∙ 𝑑[𝑏[𝑙]]

6.Repeat the above steps until the error is acceptable

Optimization – Learning Rate and Momentum

• Stochastic gradient descent (mini-batch gradient descent)

• SGD with momentum prevents oscillations

• Adaptive Learning Rate
− RMSProp

− Adam

𝑣𝑑𝑊 = 𝛽𝑣𝑑𝑊 + 1 − 𝛽 𝑑𝑊

𝑣𝑑𝑏 = 𝛽𝑣𝑑𝑏 + 1 − 𝛽 𝑑𝑏

𝑊 = 𝑊 − 𝛼𝑣𝑑𝑊,

𝑏 = 𝑏 − 𝛼𝑣𝑑𝑏

𝑆𝑑𝑊 = 𝛽𝑆𝑑𝑊 + 1 − 𝛽 𝑑𝑊2 𝑊 = 𝑊 −
𝛼

𝑆𝑑𝑊
𝑑𝑊

𝑣𝑑𝑊 = 𝛽1𝑣𝑑𝑊 + 1 − 𝛽1 𝑑𝑊 𝑆𝑑𝑊 = 𝛽2𝑆𝑑𝑊 + 1 − 𝛽2 𝑑𝑊2

𝑣𝑑𝑤
𝑐𝑜𝑟𝑟 =

𝑣𝑑𝑤

𝛽1
𝑡 𝑆𝑑𝑤

𝑐𝑜𝑟𝑟 =
𝑆𝑑𝑤

𝛽2
𝑡

𝑊 = 𝑊 −
𝛼

𝑆𝑑𝑤
𝑐𝑜𝑟𝑟 + 𝜀

𝑣𝑑𝑤
𝑐𝑜𝑟𝑟

11/19/2018

5

Regularization

• Parameter Regularization:
− Adding L1 (Lasso) , L2 (Ridge) or sometimes combined (Elastic) to cost function

− Other norms are computationally ineffective

• Dropout
− Forward: multiply the output of hidden layer with mask of 0s and 1s randomly drawn from a

Bernoulli distribution and remove all the links to the dropout nodes

− Backward: do gradient descent through diminished network

Convolutional Neural Network
Building Blocks

11/19/2018

6

Why not just use a MLP for images?

• MLP connects each pixel in an image to each neuron and suffers from
the curse of dimensionality, so it does not scale well to higher
resolution images.

• For example: a small 200 × 200 pixel RGB image the first weight
matrix of FC would have 200 × 200 × 3 × #𝑛𝑒𝑢𝑟𝑜𝑛 = 12,000 ×
#𝑛𝑒𝑢𝑟𝑜𝑛 parameters for the first layer alone

Convolution Operation

General form:

𝑆 𝑡 = න𝑓 𝑎 𝑔 𝑡 − 𝑎 𝑑𝑎

Denoted by:
𝑠 𝑡 = (𝑓 ∗ 𝑔)(𝑡)

Network terminology:

𝑓: input, usually a multidimensional arrays

𝑔: kernel or filter

𝑠: output is referred to as the feature map

• In practice, CNN actually uses kernels without flipping (i.e. cross-correlation)

11/19/2018

7

Fast Fourier Transforms on GPUs

• Convolution theorem: Fourier transfer of a convolution of two signals is the
pointwise product of their Fourier transforms.

• Fast Fourier transfer (FFT) reduces the complexity of convolution from 𝑂(𝑛2) to
𝑂(𝑛log 𝑛)

• GPU-accelerated FFT implementations that perform up to 10 times faster than
CPU only alternatives. (e.g. NVIDIA CUDA libraries)

ℱ 𝑥 ∗ 𝑤 = ℱ 𝑥 ∙ ℱ 𝑤

𝑥 ∗ 𝑤 = ℱ−1{ℱ 𝑥 ∙ ℱ 𝑤 }

2D Convolution Operation

An example of 2D convolution without
kernel flipping. Boxes connected by
arrows indicating how the upper-left
element of the output is formed by
applying the kernel to the corresponding
upper-left region of the input.

This process is called as template
matching. The inner product between a
kernel and a piece of image is maximized
exactly when those two vectors match
up.

11/19/2018

8

Examples of kernel effects

Identity

0 0 0
0 1 0
0 0 0

Edge detection 1

−1 −1 −1
−1 8 −1
−1 −1 −1

Edge detection 2

0 1 0
1 −4 1
0 1 0

Box blur

1

9

1 1 1
1 1 1
1 1 1

Motivation 1: Local Connectivity

• In FC layers, every output unit interacts with
every input unit.

• Because kernel is usually smaller than the
input, CNN typically have sparse interactions.

• Store fewer parameters which both reduces
the memory requirements and improves
statistical efficiency.

• Compute the output requires fewer
operations.

11/19/2018

9

Motivation 1: Local Connectivity

• In a deep convolutional network, units in the
deeper layers may indirectly interact with a
larger portion of the input.

• This allows the network to efficiently describe
complicated interactions from constructing
simple building blocks that each describe only
sparse interactions.

• For example, h3 is connected to 3 input
variables, while g3 is connected to all 5 input
variables through indirect connections

Growing Receptive Fields

Motivation 2: Parameter Sharing

• In a traditional neural network, each element of
the weight matrix is used exactly once when
computing the output of a layer.

• In a convolutional neural network, each member
of the kernel is used at every position of the input
(except some of the boundary pixels).

• Parameter sharing means that rather than
learning a separate set of parameters for every
location, we learn only one set.

• It does further reduce the storage requirement of
model parameters. Thus convolution is
dramatically more efficient than dense matrix
multiplication in terms of memory requirements
and statistical efficiency

11/19/2018

10

Motivation 2: Parameter Sharing

• Image on right is formed by taking each pixel
and subtracting the value of its neighboring
pixel. Output image shows the vertically
oriented edges.

• The input image is 280 pixels tall and 320
pixels wide. The output image is 319 pixels
wide.

• CNN stores 2 parameters, while to describe
the same transformation with a matrix
multiplication would need 320 × 280 ×
319 × 280 > 8e9 weights

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Motivation 3: Equivariance to Translation

• Parameter sharing causes the layer to have a property called equivariance to
translation.

• With images, convolution creates a 2D feature maps. If we move the object in the
input, its representation will move the same amount in the output.

• When processing images, for example, it is useful to detect edges in the first layer
of a convolutional network. The same edges appear more or less everywhere in
the image. Thus the same kernel can be used at different places.

11/19/2018

11

Padding

Downsides of convolution

• Image shrinks after applying convolutional operation. In a very deep neural network, after many
steps, we end up with a very small output.

• Pixels on the corners or edges are used much less than pixels in the middle. Lots of information
from the edges of the image are throwed away.

∗ =

6 by 6

3 by 3
4 by 4A

B

A

BBB

B B B

B B B

Zero Padding

• Padding the image with additional border(s)

• Set pixel values to 0 on the border

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

∗ =

3 by 3

6 by 6

8 by 8

A A

A

A

A

11/19/2018

12

Zero Padding Graph

• Consider a filter of width six at
every layer

• Starting from an input of sixteen
pixels, without zero padding, we
are only able to have three
convolutional layers

• Adding five zeros to each layer
prevents the representation from
shrinking with depth

Stride

• Stride controls how far filter shifts at each step.

• Increase the stride if we want receptive fields to have less overlaps and if we
want smaller output dimensions

2 3 7 4 6 2 9

6 6 9 8 7 4 3

3 4 8 3 8 9 7

7 8 3 6 6 3 4

4 2 1 8 3 4 6

3 2 4 1 9 8 3

0 1 3 9 2 1 4

∗

3 4 4

1 0 2

-1 0 3

=

91 100 83

69

11/19/2018

13

Stride Graph

• Strided convolution is a down
sampling strategy

• Having two steps approach that
involves down sampling is
computationally wasteful.

2D Convolution Summary

• Input size: 𝑊1 × 𝐻1
• Hyperparameters:

− filter size: 𝐹 × 𝐹

− amount of zero padding: 𝑃

− stride: 𝑆

• Output size:

− 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1

− 𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1

11/19/2018

14

Convolutions Over Channels

• Input size: 𝑊1 × 𝐻1 × 𝐷1

• Hyperparameters:

− filter size: 𝐹 × 𝐹 × 𝐷1
− amount of zero padding: 𝑃

− stride: 𝑆

− number of filters: 𝐾

• Output size:

− 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1

− 𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1

− 𝐷2 = 𝐾

• Number of parameters:
− Weights: 𝐹 × 𝐹 × 𝐷1 ×𝐾

− Bias: 𝐾

http://cs231n.github.io/assets/conv-demo/index.html

Pooling

• Pooling layer is used to reduce the spatial size of
representation

• Pooling layer is usually attached after a convolutional
layer

• It helps to reduce the amount of parameters and speed
up the computation.

• Types:
− Max Pooling (most popular)

− Average Pooling

− L2 norm of a rectangular neighborhood

• It has hyperparameters but no parameters to learn

http://cs231n.github.io/assets/conv-demo/index.html

11/19/2018

15

Max Pooling

1 3 2 1

2 9 1 1

1 3 2 3

5 6 1 2

Max Pooling: 𝐹 = 2, 𝑆 = 2

9 2

6 3

Hyperparameters:
• filter size: 𝐹 × 𝐹
• stride: 𝑆

Common choices:
• 𝐹 = 2, 𝑆 = 2
• 𝐹 = 3, 𝑆 = 2

Max Pooling and Invariance to Translation

• Max pooling helps to make the
representation approximately invariant to
small translations of the input.

• Invariance to local translation is a useful
property if we care more about whether
some feature is present than exactly
where it is

• For example, every value in the bottom
row of the lower network has changed,
but only half of the values in the top
pooling layer have changed, because the
max pooling units are sensitive only to
the maximum value in the neighborhood,
not its exact location

11/19/2018

16

Max Pooling Cross Channels

• Pooling over multiple features (channels) can
learn to be invariant to transformations of the
input, such as rotation.

• For example, all three filters are intended to
detect a hand written 5 and each filter
attempts to match a slightly different
orientation of the 5. The max pooling unit has
a large activation regardless of which filter
unit was activated.

1 by 1 Convolution

• 1 × 1 convolution shrinks the number of channels

• Creates bottleneck layer to reduce computational cost
• Used in building inception module which combines layers generated by filters

with different spatial size (e.g. 1 × 1 , 3 × 3 , 5 × 5 , etc.)

∗

28 × 28 × 192 1 × 1 × 192
16

28 × 28 × 16

Bottleneck layer

11/19/2018

17

Convolutional Neural Network
Architectures

LeNet-5

⋮ ⋮

32×32 × 1 28×28×6 14×14×6 10×10×16 5×5×16

120 84

5 × 5

s = 1

d = 1

k = 6

f = 2

s = 2

pooling

5 × 5

s = 1

d = 6

k = 16

pooling

f = 2

s = 2
K

Handwritten character recognition

conv conv

FC FC

Common pattern
• As going deeper in the neural network, the spatial representation will usually reduce (e.g. 32 × 32 →
28 × 28 → 14 × 14 → 10 × 10 → 5 × 5) , while the number of channels will increase (e.g. 1 → 6 →
16)

• CONV – POOL – CONV – POOL – FC – FC - SOFTMAX

LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition”,
IEEE 1998

11/19/2018

18

LeNet-5

Activation shape Activation Size # parameters

Input: (32,32,1) 1,024 0

CONV1 (f=5, s=1) (28,28,6) 4,704 156

POOL1 (14,14,6) 1,176 0

CONV2 (f=5, s=1) (10,10,16) 1,600 416

POOL2 (5,5,16) 400 0

FC3 (120,1) 120 48,001

FC4 (84,1) 84 10,081

Softmax (10,1) 10 841

ILSVRC Winners

28.2%

25.8%

16.4%

11.7%

7.3% 6.7%

3.6% 3.0%
2.3%

5.1%

8 8

19 22

152 152 152

0

20

40

60

80

100

120

140

160

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Error Rate #Layers

Lin et al Sanchez &

Perronnin

Krizhevsky et al.

(AlexNet)

Zeiler &

Fergus

Simonyan

(VGG)
Szegedy et al.

(GoogLeNet)

He et al.

(ResNet)

Shao et al. Hu et. al

(SENet)

11/19/2018

19

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)

• ILSVRC is a benchmark in object category
classification and detection

• The image classification: for each image,
algorithm produce a list of object
categories present in the image. The
quality of a labeling is evaluated based on
the label that best matches the ground
truth label for the image.

• ~1000 images in each of 1000 categories.
~1.2 million training images, 50,000
validation images and 150,000 testing
images

ILSVRC Winners - AlexNet

28.2%

25.8%

16.4%

11.7%

7.3% 6.7%

3.6% 3.0%
2.3%

5.1%

8 8

19 22

152 152 152

0

20

40

60

80

100

120

140

160

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Error Rate #Layers

Lin et al Sanchez &

Perronnin

Krizhevsky et al.

(AlexNet)

Zeiler &

Fergus

Simonyan

(VGG)
Szegedy et al.

(GoogLeNet)

He et al.

(ResNet)

Shao et al. Hu et. al

(SENet)

1st CNN-based winner

11/19/2018

20

AlexNet
• Architecture

− [227*227*3] Input

− [55*55*96] CONV1: 96 11*11 filters at stride 4, pad 0

− [27*27*96] MAX POOL1: 3*3 filters at stride 2

− [27*27*96] NORM1: Normalization layer

− [27*27*256] CONV2: 256 5*5 filters at stride 1, pad 2

− [13*13*256] MAX POOL2: 3*3 filters at stride 2
− [13*13*256] NORM2: Normalization layer

− [13*13*384] CONV3: 384 3*3 filters at stride 1, pad 1

− [13*13*384] CONV4: 384 3*3 filters at stride 1, pad 1

− [13*13*256] CONV5: 256 3*3 filters at stride 1, pad 1

− [6*6*256] MAX POOL3: 3*3 filters at stride 2

− [4096] FC6: 4096 neurons
− [4096] FC7: 4096 neurons

− [1000] FC8: 1000 neurons (class scores)

• It has ~60 million parameters which is much larger than LeNet-5 (~60K parameters)

• First use of ReLU activation function

• Dropout 0.5

• SGD momentum 0.9

• Use 7 CNN ensembles to improve performance

Krizhevsky, Sutskever, Hinton, “ImageNet Classification with Deep Convolutional Neural
Networks”, NIPS 2012

ILSVRC Winners - VGG

28.2%

25.8%

16.4%

11.7%

7.3% 6.7%

3.6% 3.0%
2.3%

5.1%

8 8

19 22

152 152 152

0

20

40

60

80

100

120

140

160

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Error Rate #Layers

Lin et al Sanchez &

Perronnin

Krizhevsky et al.

(AlexNet)

Zeiler &

Fergus

Simonyan

(VGG)
Szegedy et al.

(GoogLeNet)

He et al.

(ResNet)

Shao et al. Hu et. al

(SENet)

Deeper Networks

11/19/2018

21

VGG

• Simplified architecture, uses uniform layer structure

− 3*3 CONV stride 1

− 2*2 MAX POOLING stride 2

• Stack of three 3*3 CONV stride 1 layers has the same effective
receptive field as one 7*7 layer with fewer parameters 3*(3*3*K)
vs. 7*7*K

• Smaller filters but deeper network and more non-linearities

• VGG16 has total 138 millions parameters

• VGG16 vs. VGG19: VGG19 is only slightly better but takes more
memory

• Similar training procedure as AlexNet

Simonyan, Zisserman, “Very Deep Convolutional Networks For Large-Scale Image
Recognition”, ICLR 2015

ILSVRC Winners - ResNet

28.2%

25.8%

16.4%

11.7%

7.3% 6.7%

3.6% 3.0%
2.3%

5.1%

8 8

19 22

152 152 152

0

20

40

60

80

100

120

140

160

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Error Rate #Layers

Lin et al Sanchez &

Perronnin

Krizhevsky et al.

(AlexNet)

Zeiler &

Fergus

Simonyan

(VGG)
Szegedy et al.

(GoogLeNet)

He et al.

(ResNet)

Shao et al. Hu et. al

(SENet)

Revolution of Depth

11/19/2018

22

ResNet - Motivation

• What happens when we continue stacking deeper layers?
− 56-layer model performs worse on both training and test error

− It is not caused by overfitting

• This is a optimization problem, deeper models are harder to optimize

He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”, CVPR 2015

ResNets – Residual Block

𝑎[𝑙] 𝑎[𝑙+2]
𝑎[𝑙+1]

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+2]

𝑎[𝑙+2] = 𝑔(𝑧[𝑙+2])

𝑎[𝑙] 𝑎[𝑙+2]
𝑎[𝑙+1]

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+2]

𝑎[𝑙+2] = 𝑔(𝑧 𝑙+2 + 𝑎[𝑙])

𝑎[𝑙+2] = 𝑔 𝑎 𝑙 = 𝑎 𝑙

Residual block

• The residual block performs as an identical function when the extra two layers doesn’t
learn any useful information (i.e. zero weights)

• It makes the network easy to learn with deeper layers and meanwhile guarantees extra
layers don’t hurt network’s overall performance.

𝑧[𝑙+1] = 𝑊 [𝑙+1] 𝑎[𝑙] + 𝑏[𝑙+1]

𝑎[𝑙+1] = 𝑔(𝑧[𝑙+1])

𝑧[𝑙+1] = 𝑊 [𝑙+1] 𝑎[𝑙] + 𝑏[𝑙+1]

𝑎[𝑙+1] = 𝑔(𝑧[𝑙+1])

11/19/2018

23

ResNet - Architecture

He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”, CVPR 2015

Improving ResNets

• “Good Practices for Deep Feature Fusion” [Shao et al. 2016]
− Multi-scale ensembling of inception, inception-Resnet, Resnet, Wide Resnet models

− ILSVRC’16 classification winner

• “Squeeze-and-Excitation Networks (SENet)” [Hu et al. 2017]
− Add a “feature recalibration” module that learns to adaptively reweight feature maps

− Global average pooling layer + 2 FC layers used to determine feature map weights

− ILSVRC’17 classification winner

11/19/2018

24

Transfer Learning

• In practice, it is rare to have a dataset of sufficient size to train an entire
convolutional network from scratch.

• Pertain a CNN trained on a very large dataset (e.g. ImageNet) and use it to a
related new task.

• Transfer Learning scenarios
− When new dataset is small and similar to original dataset

• Fixed Feature extractor: remove last classifier layer and treat the rest of the CNN as a fixed feature extractor for
the new dataset.

− When new dataset is large and similar to original dataset
• Fine-Tuning the CNN: not only replace and retrain the last classifier, but also fine-tune all the layers, or keep

some of the earlier layers fixed and only fine-tune some deeper portion of the network

− When new dataset is large different from the original dataset
• Weights initialization: It is very often still beneficial to initialize with weights from a pretrained model and then

fine-tune through the entire network.

Data Augmentation

• Helps with improving model robustness and reducing overfitting

• Label-preserving transformations

• Methods:
− Horizontal flips

− Random crops/scales

− Translation

− Color jitter

− Rotation

− etc. Horizontal flips

Crops/scales

Jitter contrast

11/19/2018

25

Convolutional Neural Network
Visualizing and Understanding

How Convolutional Networks are working?

• Can we get intuitions about what type of features in the images that CNN are
looking for?

• What kind techniques we have for analyzing this internals of the network?

What’s going on inside CNN?

11/19/2018

26

First Layer
96 convolutional kernels of size 11 by 11 by 3 learned by the
first convolutional layer on the 224 by 224 by 3 input images

Why visualize the weights of the fist layer?
Template matching - the inner product between a kernel and a
piece of image is maximized exactly when those two vectors
match up.

Weights in Deeper Layers

2nd convolutional filters are not very interpretable
They are connected to the nonlinear output of first
layer. So this visualization shows what activation
pattern after first layer would cause second
convolutional layer to maximally activated.
Not very interpretable

3rd and deeper convolutional filters are getting more
and more difficult to directly interpret.

11/19/2018

27

Last Layer: Nearest Neighbors

Nearest Neighbors in Pixel Space

Nearest Neighbors in Feature Space

Maximally Activating Patches

• Pick a layer and a channel, e.g. conv5,
cannel 20 in AlexNet

• Run many different images through the
AlexNet and record values of the chosen
channel

• Visualize image patches that associated
with maximal activations

• Deeper layers have larger receptive fields
and look at larger objects

Each row is a different channel
Springenberg et al. “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Deeper

Shallower

11/19/2018

28

Guided Backprop

• Pick a layer and a channel, e.g. conv5,
cannel 20 in AlexNet

• Compute gradient of neuron value with
respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Gradient Ascent

• Recall that guided backprop looks at a
fixed image and tries to find which part of
the image or which set of pixels influence
the output of selected neuron

• Gradient Ascent tries to find what type of
input in general would cause this neuron
to activate
− Fix the weights of trained network

− Synthesize image by performing gradient
ascent

− Maximize the score of a given class or an
intermediate neuron

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualizing Image
Classification Models and Saliency Maps”, ICLR Workshop 2014

11/19/2018

29

More Applications

1D Convolutional Neural Networks

• Heart arrhythmia detection using electrocardiograms (ECG)
− Trained a deep 34-layer CNN which maps a sequence of ECG to a

sequence of rhythm classes

− Optimization with residual blocks.

− Achieved cardiologist-level accuracy

One dimensional filters
looking at local patterns

11/19/2018

30

Other applications

• Object detection, object localization (e.g. self driving car)

• Face detection, recognition (e.g. unlock phones, prevent crime, school
attendance)

• Natural language processing (e.g. key phrase recognition, question-answer
matching)

• Medical diagnosis (e.g. diabetic eye disease, fMRI data tumor segmentation)

• Drug discovery (e.g. predicting interaction between molecules and biological
proteins)

Packages and Frameworks

11/19/2018

31

References

• Gradient-Based Learning Applied to Document Recognition, LeCun, Bottou, Bengio, Haffner, IEEE
1998

• ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky, Sutskever, Hinton,
NIPS 2012

• Very Deep Convolutional Networks For Large-Scale Image Recognition, Simonyan, Zisserman, ICLR
2015

• Deep Residual Learning for Image Recognition, He, Zhang, Ren, and Sun, CVPR 2015

• Good Practices for Deep Feature Fusion, Shao et al. 2016

• Squeeze-and-Excitation Networks (SENet), Hu et al. CVPR 2017

• Striving for Simplicity: The All Convolutional Net, Springenberg et al., ICLR Workshop 2015

• Visualizing and Understanding Convolutional Networks, Zeiler and Fergus, ECCV 2014

• Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps,
Simonyan, Vedaldi, and Zisserman, ICLR Workshop 2014

Tutorials

• Stanford CS231n: Convolutional Neural Networks for Visual Recognition

• Coursera Deep Learning Specialization

• CMU 11777, Lecture 3: CNN and Optimization

http://cs231n.stanford.edu/syllabus.html
https://www.coursera.org/specializations/deep-learning
https://piazza-resources.s3.amazonaws.com/iv8u4ersu9f4hj/iymcf65rfzd2ie/lecture3.1CNN_and_Optimization.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIAR6AWVCBX46YXH2ZC/20181108/us-east-1/s3/aws4_request&X-Amz-Date=20181108T165126Z&X-Amz-Expires=10800&X-Amz-SignedHeaders=host&X-Amz-Security-Token=FQoGZXIvYXdzEGQaDFacvL16NOdLKo0GtyK3A3UcOXZH1JaIBS18gRletOVhADy4SF2abxReSL98JpUeCTroJotf6uZHnzko0Rx1fEVDNuqIUoXbLhbTVy3ATLkpn8JZV/ocRphgebmOKLIkzuIr9VA7S1OdnyJr%2BdgSB%2BKDXCiBEUlJ/0eP0RCr77PMV5Pr6Q/HImPg2ISZ9TNzdnnykWN%2B2W8GaETRnbMcvQImUVISRiQyXtWvxhBN0AtsgAeNiY7P814K2JfHBtX9cxzLmaiV0NoB5JuAzQrTVrCORDO1wK7P86iuFfGd7Ws0XNAgheIU%2B4UB5EturQffsLB1vWWNY6F0jZ5rsfyxOaYbaGLW6d2eLno9UTcDvsR52eCzt28YmtmaZEQ1dCkINpbKW/HqL0QJmQ8M/sM7fR1%2BkBo7sh/KaQhmE1x93%2Bk7kpIdoywFw9c3j8cmUrhkgSPecBlanzH%2B8j4FEBpv9DGYpRrxzGCICTWbRIbFnDK6MIfT9JNMuYKq9v5gzxu9qrSrtnUYLGLtoyvSwUO5LmqZcYQMAPP2EB1E8tulQWONUpVWVch4Z2HtbD830xZdGYAtn%2BtQj1kgA0Ql4xI68kCEInMiyY4ooqqQ3wU%3D&X-Amz-Signature=e970736359dfd5af9fb23289ec3f43a457bc1900386d6e4bb0d9c1d17957e7d2

11/19/2018

32

Thank You!
Q & A

