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Presented by: Ke Yu

11/13/2018

Outline

• Neural networks recap

• Building blocks of CNN

• Architectures of CNN

• Visualizing and understanding CNN

• More applications
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Neural Networks Recap

Multilayer Perceptron (MLP)

Fully-connected (FC) layer

• A layer has full connections to all activations in the previous layer 
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Activation Functions
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Backpropagation Algorithm

1.The network is initialized with randomly chosen weights

2.Implement forward propagation to get all intermediates 𝑧[𝑙], 𝑎[𝑙]

3.Compute cost function 𝐽 𝑊, 𝑏

4.Network back propagates the error and calculates the gradients

5.Adjust the weights of the network 
𝑊[𝑙]: = 𝑊[𝑙] − 𝛼 ∙ 𝑑[𝑊[𝑙]]

𝑏[𝑙]: = 𝑏[𝑙] − 𝛼 ∙ 𝑑[𝑏[𝑙]]

6.Repeat the above steps until the error is acceptable

Optimization – Learning Rate and Momentum

• Stochastic gradient descent (mini-batch gradient descent)

• SGD with momentum prevents oscillations 

• Adaptive Learning Rate
− RMSProp

− Adam

𝑣𝑑𝑊 = 𝛽𝑣𝑑𝑊 + 1 − 𝛽 𝑑𝑊
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Regularization

• Parameter Regularization:
− Adding L1 (Lasso) , L2 (Ridge) or sometimes combined (Elastic)  to cost function

− Other norms are computationally ineffective

• Dropout
− Forward: multiply the output of hidden layer with mask of 0s and 1s randomly drawn from a 

Bernoulli distribution and remove all the links to the dropout nodes

− Backward: do gradient descent through diminished network

Convolutional Neural Network
Building Blocks
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Why not just use a MLP for images? 

• MLP connects each pixel in an image to each neuron and suffers from 
the curse of dimensionality, so it does not scale well to higher 
resolution images. 

• For example: a small 200 × 200 pixel RGB image the first weight 
matrix of FC would have 200 × 200 × 3 × #𝑛𝑒𝑢𝑟𝑜𝑛 = 12,000 ×
#𝑛𝑒𝑢𝑟𝑜𝑛 parameters for the first layer alone

Convolution Operation

General form:

𝑆 𝑡 = න𝑓 𝑎 𝑔 𝑡 − 𝑎 𝑑𝑎

Denoted by:
𝑠 𝑡 = (𝑓 ∗ 𝑔)(𝑡)

Network terminology:

𝑓: input, usually a multidimensional arrays

𝑔: kernel or filter 

𝑠: output is referred to as the feature map

• In practice, CNN actually uses kernels without flipping (i.e. cross-correlation)
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Fast Fourier Transforms on GPUs

• Convolution theorem: Fourier transfer of a convolution of two signals is the 
pointwise product of their Fourier transforms. 

• Fast Fourier transfer (FFT) reduces the complexity of convolution from 𝑂(𝑛2) to 
𝑂(𝑛log 𝑛 )

• GPU-accelerated FFT implementations that perform up to 10 times faster than 
CPU only alternatives. (e.g. NVIDIA CUDA libraries)

ℱ 𝑥 ∗ 𝑤 = ℱ 𝑥 ∙ ℱ 𝑤

𝑥 ∗ 𝑤 = ℱ−1{ℱ 𝑥 ∙ ℱ 𝑤 }

2D Convolution Operation

An example of 2D convolution without 
kernel flipping. Boxes connected by 
arrows indicating how the upper-left 
element of the output is formed by 
applying the kernel to the corresponding 
upper-left region of the input.

This process is called as template 
matching. The inner product between a 
kernel and a piece of image is maximized 
exactly when those two vectors match 
up.
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Examples of kernel effects

Identity

0 0 0
0 1 0
0 0 0

Edge detection 1

−1 −1 −1
−1 8 −1
−1 −1 −1

Edge detection 2

0 1 0
1 −4 1
0 1 0

Box blur

1

9

1 1 1
1 1 1
1 1 1

Motivation 1: Local Connectivity

• In FC layers, every output unit interacts with 
every input unit.

• Because kernel is usually smaller than the 
input, CNN typically have sparse interactions.

• Store fewer parameters which both reduces 
the memory requirements and improves 
statistical efficiency. 

• Compute the output requires fewer 
operations. 
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Motivation 1: Local Connectivity 

• In a deep convolutional network, units in the 
deeper layers may indirectly interact with a 
larger portion of the input. 

• This allows the network to efficiently describe 
complicated interactions from constructing 
simple building blocks that each describe only 
sparse interactions.

• For example, h3 is connected to 3 input 
variables, while g3 is connected to all 5 input 
variables through indirect connections

Growing Receptive Fields

Motivation 2: Parameter Sharing 

• In a traditional neural network, each element of 
the weight matrix is used exactly once when 
computing the output of a layer.

• In a convolutional neural network, each member 
of the kernel is used at every position of the input 
(except some of the boundary pixels). 

• Parameter sharing means that rather than 
learning a separate set of parameters for every 
location, we learn only one set.

• It does further reduce the storage requirement of 
model parameters. Thus convolution is 
dramatically more efficient than dense matrix 
multiplication in terms of memory requirements 
and statistical efficiency
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Motivation 2: Parameter Sharing 

• Image on right is formed by taking each pixel 
and subtracting the value of its neighboring 
pixel. Output image shows the vertically 
oriented edges. 

• The input image is 280 pixels tall and 320 
pixels wide. The output image is 319 pixels 
wide. 

• CNN stores 2 parameters, while to describe 
the same transformation with a matrix 
multiplication would need 320 × 280 ×
319 × 280 > 8e9 weights

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Motivation 3: Equivariance to Translation

• Parameter sharing causes the layer to have a property called equivariance to 
translation.

• With images, convolution creates a 2D feature maps. If we move the object in the 
input, its representation will move the same amount in the output.

• When processing images, for example, it is useful to detect edges in the first layer 
of a convolutional network. The same edges appear more or less everywhere in 
the image. Thus the same kernel can be used at different places. 
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Padding

Downsides of convolution

• Image shrinks after applying convolutional operation. In a very deep neural network, after many 
steps, we end up with a very small output.

• Pixels on the corners or edges are used much less than pixels in the middle. Lots of information 
from the edges of the image are throwed away. 

∗ =

6 by 6

3 by 3
4 by 4A

B

A

BBB

B B B

B B B

Zero Padding

• Padding the image with additional border(s)

• Set pixel values to 0 on the border

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

∗ =

3 by 3

6 by 6

8 by 8

A A

A

A

A
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Zero Padding Graph

• Consider a filter of width six at 
every layer

• Starting from an input of sixteen 
pixels, without zero padding, we 
are only able to have three 
convolutional layers

• Adding five zeros to each layer 
prevents the representation from 
shrinking with depth

Stride

• Stride controls how far filter shifts at each step.

• Increase the stride if we want receptive fields to have less overlaps and if we 
want smaller output dimensions 

2 3 7 4 6 2 9

6 6 9 8 7 4 3

3 4 8 3 8 9 7

7 8 3 6 6 3 4

4 2 1 8 3 4 6

3 2 4 1 9 8 3

0 1 3 9 2 1 4

∗

3 4 4

1 0 2

-1 0 3

=

91 100 83

69
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Stride Graph

• Strided convolution is a down 
sampling strategy

• Having two steps approach that 
involves down sampling is 
computationally wasteful.

2D Convolution Summary

• Input size: 𝑊1 × 𝐻1
• Hyperparameters:

− filter size: 𝐹 × 𝐹

− amount of zero padding: 𝑃

− stride:  𝑆

• Output size:

− 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1

− 𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1
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Convolutions Over Channels

• Input size: 𝑊1 × 𝐻1 × 𝐷1

• Hyperparameters:

− filter size: 𝐹 × 𝐹 × 𝐷1
− amount of zero padding: 𝑃

− stride:  𝑆

− number of filters: 𝐾

• Output size: 

− 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1

− 𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1

− 𝐷2 = 𝐾

• Number of parameters:
− Weights: 𝐹 × 𝐹 × 𝐷1 ×𝐾

− Bias: 𝐾

http://cs231n.github.io/assets/conv-demo/index.html

Pooling

• Pooling layer is used to reduce the spatial size of 
representation

• Pooling layer is usually attached after a convolutional 
layer

• It helps to reduce the amount of parameters and speed 
up the computation.

• Types:
− Max Pooling (most popular)

− Average Pooling

− L2 norm of a rectangular neighborhood

• It has hyperparameters but no parameters to learn

http://cs231n.github.io/assets/conv-demo/index.html
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Max Pooling

1 3 2 1

2 9 1 1

1 3 2 3

5 6 1 2

Max Pooling: 𝐹 = 2, 𝑆 = 2

9 2

6 3

Hyperparameters:
• filter size: 𝐹 × 𝐹
• stride:  𝑆

Common choices:
• 𝐹 = 2, 𝑆 = 2
• 𝐹 = 3, 𝑆 = 2

Max Pooling and Invariance to Translation

• Max pooling helps to make the 
representation approximately invariant to 
small translations of the input.

• Invariance to local translation is a useful 
property if we care more about whether 
some feature is present than exactly 
where it is

• For example, every value in the bottom 
row of the lower network has changed, 
but only half of the values in the top 
pooling layer have changed, because the 
max pooling units are sensitive only to 
the maximum value in the neighborhood, 
not its exact location
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Max Pooling Cross Channels

• Pooling over multiple features (channels) can 
learn to be invariant to transformations of the 
input, such as rotation.

• For example, all three filters are intended to 
detect a hand written 5 and each filter 
attempts to match a slightly different 
orientation of the 5. The max pooling unit has 
a large activation regardless of which filter 
unit was activated. 

1 by 1 Convolution

• 1 × 1 convolution shrinks the number of channels

• Creates bottleneck layer to reduce computational cost
• Used in building inception module which combines layers generated by filters 

with different spatial size (e.g. 1 × 1 , 3 × 3 , 5 × 5 , etc.)

∗

28 × 28 × 192 1 × 1 × 192
16

28 × 28 × 16

Bottleneck layer
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Convolutional Neural Network
Architectures

LeNet-5

⋮ ⋮

32×32 × 1 28×28×6 14×14×6 10×10×16 5×5×16

120 84

5 × 5

s = 1

d = 1

k = 6

f = 2

s = 2

pooling

5 × 5

s = 1

d = 6

k = 16

pooling

f = 2

s = 2
K

Handwritten character recognition

conv conv

FC FC

Common pattern
• As going deeper in the neural network, the spatial representation will usually reduce (e.g. 32 × 32 →
28 × 28 → 14 × 14 → 10 × 10 → 5 × 5) , while the number of channels will increase (e.g. 1 → 6 →
16)

• CONV – POOL – CONV – POOL – FC – FC - SOFTMAX

LeCun, Bottou, Bengio, Haffner, “Gradient-Based Learning Applied to Document Recognition”, 
IEEE 1998
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LeNet-5

Activation shape Activation Size # parameters

Input: (32,32,1) 1,024 0

CONV1 (f=5, s=1) (28,28,6) 4,704 156

POOL1 (14,14,6) 1,176 0

CONV2  (f=5, s=1) (10,10,16) 1,600 416

POOL2 (5,5,16) 400 0

FC3 (120,1) 120 48,001

FC4 (84,1) 84 10,081

Softmax (10,1) 10 841

ILSVRC Winners
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ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC)

• ILSVRC is a benchmark in object category 
classification and detection

• The image classification: for each image, 
algorithm produce a list of object 
categories present in the image. The 
quality of a labeling is evaluated based on 
the label that best matches the ground 
truth label for the image.

• ~1000 images in each of 1000 categories. 
~1.2 million training images, 50,000 
validation images and 150,000 testing 
images

ILSVRC Winners - AlexNet

28.2%

25.8%

16.4%

11.7%

7.3% 6.7%

3.6% 3.0%
2.3%

5.1%

8 8

19 22

152 152 152

0

20

40

60

80

100

120

140

160

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Error Rate #Layers

Lin et al Sanchez &

Perronnin

Krizhevsky et al.

(AlexNet)

Zeiler & 

Fergus

Simonyan

(VGG)
Szegedy et al.

(GoogLeNet)

He et al.

(ResNet)

Shao et al. Hu et. al

(SENet)

1st CNN-based winner
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AlexNet
• Architecture

− [227*227*3] Input

− [55*55*96] CONV1: 96 11*11 filters at stride 4, pad 0

− [27*27*96] MAX POOL1: 3*3 filters at stride 2

− [27*27*96] NORM1: Normalization layer

− [27*27*256] CONV2: 256 5*5 filters at stride 1, pad 2

− [13*13*256] MAX POOL2: 3*3 filters at stride 2
− [13*13*256] NORM2: Normalization layer

− [13*13*384] CONV3: 384 3*3 filters at stride 1, pad 1

− [13*13*384] CONV4: 384 3*3 filters at stride 1, pad 1

− [13*13*256] CONV5: 256 3*3 filters at stride 1, pad 1

− [6*6*256] MAX POOL3: 3*3 filters at stride 2

− [4096] FC6: 4096 neurons
− [4096] FC7: 4096 neurons

− [1000] FC8: 1000 neurons (class scores)

• It has ~60 million parameters which is much larger than LeNet-5 (~60K parameters)

• First use of ReLU activation function

• Dropout 0.5

• SGD momentum 0.9

• Use 7 CNN ensembles to improve performance

Krizhevsky, Sutskever, Hinton, “ImageNet Classification with Deep Convolutional Neural 
Networks”, NIPS 2012

ILSVRC Winners - VGG
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Deeper Networks
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VGG

• Simplified architecture, uses uniform layer structure

− 3*3 CONV stride 1

− 2*2 MAX POOLING stride 2

• Stack of three 3*3 CONV stride 1 layers has the same effective 
receptive field as one 7*7 layer with fewer parameters 3*(3*3*K) 
vs. 7*7*K

• Smaller filters but deeper network and more non-linearities

• VGG16 has total 138 millions parameters

• VGG16 vs. VGG19: VGG19 is only slightly better but takes more 
memory

• Similar training procedure as AlexNet

Simonyan, Zisserman, “Very Deep Convolutional Networks For Large-Scale Image 
Recognition”, ICLR 2015

ILSVRC Winners - ResNet
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Revolution of Depth
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ResNet - Motivation

• What happens when we continue stacking deeper layers?
− 56-layer model performs worse on both training and test error

− It is not caused by overfitting

• This is a optimization problem, deeper models are harder to optimize

He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”, CVPR 2015

ResNets – Residual Block

𝑎[𝑙] 𝑎[𝑙+2]
𝑎[𝑙+1]

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+2]

𝑎[𝑙+2] = 𝑔(𝑧[𝑙+2])

𝑎[𝑙] 𝑎[𝑙+2]
𝑎[𝑙+1]

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+2]

𝑎[𝑙+2] = 𝑔(𝑧 𝑙+2 + 𝑎[𝑙])

𝑎[𝑙+2] = 𝑔 𝑎 𝑙 = 𝑎 𝑙

Residual block

• The residual block performs as an identical function when the extra two layers doesn’t 
learn any useful information (i.e. zero weights)

• It makes the network easy to learn with deeper layers and meanwhile guarantees extra 
layers don’t hurt network’s overall performance.  

𝑧[𝑙+1] = 𝑊 [𝑙+1] 𝑎[𝑙] + 𝑏[𝑙+1]

𝑎[𝑙+1] = 𝑔(𝑧[𝑙+1])

𝑧[𝑙+1] = 𝑊 [𝑙+1] 𝑎[𝑙] + 𝑏[𝑙+1]

𝑎[𝑙+1] = 𝑔(𝑧[𝑙+1])
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ResNet - Architecture

He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”, CVPR 2015

Improving ResNets

• “Good Practices for Deep Feature Fusion” [Shao et al. 2016]
− Multi-scale ensembling of inception, inception-Resnet, Resnet, Wide Resnet models

− ILSVRC’16 classification winner

• “Squeeze-and-Excitation Networks (SENet)” [Hu et al. 2017]
− Add a “feature recalibration” module that learns to adaptively reweight feature maps

− Global average pooling layer + 2 FC layers used to determine feature map weights

− ILSVRC’17 classification winner
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Transfer Learning

• In practice, it is rare to have a dataset of sufficient size to train an entire 
convolutional network from scratch.

• Pertain a CNN trained on a very large dataset (e.g. ImageNet) and use it to a 
related new task.

• Transfer Learning scenarios
− When new dataset is small and similar to original dataset

• Fixed Feature extractor: remove last classifier layer and treat the rest of the CNN as a fixed feature extractor for 
the new dataset. 

− When new dataset is large and similar to original dataset
• Fine-Tuning the CNN: not only replace and retrain the last classifier, but also fine-tune all the layers, or keep 

some of the earlier layers fixed and only fine-tune some deeper portion of the network

− When new dataset is large different from the original dataset
• Weights initialization: It is very often still beneficial to initialize with weights from a pretrained model and then 

fine-tune through the entire network.

Data Augmentation

• Helps with improving model robustness and reducing overfitting

• Label-preserving transformations

• Methods:
− Horizontal flips

− Random crops/scales

− Translation

− Color jitter

− Rotation

− etc. Horizontal flips

Crops/scales

Jitter contrast
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Convolutional Neural Network
Visualizing and Understanding

How Convolutional Networks are working?

• Can we get intuitions about what type of features in the images that CNN are 
looking for?

• What kind techniques we have for analyzing this internals of the network?

What’s going on inside CNN?
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First Layer
96 convolutional kernels of size 11 by 11 by 3 learned by the 
first convolutional layer on the 224 by 224 by 3 input images

Why visualize the weights of the fist layer?
Template matching - the inner product between a kernel and a 
piece of image is maximized exactly when those two vectors 
match up.

Weights in Deeper Layers

2nd convolutional filters are not very interpretable
They are connected to the nonlinear output of first 
layer. So this visualization shows what activation 
pattern after first layer would cause second 
convolutional layer to maximally activated. 
Not very interpretable

3rd and deeper convolutional filters are getting more 
and more difficult to directly interpret. 
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Last Layer: Nearest Neighbors

Nearest Neighbors in Pixel Space

Nearest Neighbors in Feature Space

Maximally Activating Patches

• Pick a layer and a channel, e.g. conv5, 
cannel 20 in AlexNet

• Run many different images through the 
AlexNet and record values of the chosen 
channel

• Visualize image patches that associated 
with maximal activations

• Deeper layers have larger receptive fields 
and look at larger objects

Each row is a different channel
Springenberg et al. “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Deeper

Shallower
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Guided Backprop

• Pick a layer and a channel, e.g. conv5, 
cannel 20 in AlexNet

• Compute gradient of neuron value with 
respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Gradient Ascent

• Recall that guided backprop looks at a 
fixed image and tries to find which part of 
the image or which set of pixels influence 
the output of selected neuron

• Gradient Ascent tries to find what type of 
input in general would cause this neuron 
to activate
− Fix the weights of trained network

− Synthesize image by performing gradient 
ascent

− Maximize the score of a given class or an 
intermediate neuron

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualizing Image 
Classification Models and Saliency Maps”, ICLR Workshop 2014
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More Applications

1D Convolutional Neural Networks

• Heart arrhythmia detection using electrocardiograms (ECG)
− Trained a deep 34-layer CNN which maps a sequence of ECG to a 

sequence of rhythm classes

− Optimization with residual blocks. 

− Achieved cardiologist-level accuracy

One dimensional filters 
looking at local patterns
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Other applications

• Object detection, object localization (e.g. self driving car)

• Face detection, recognition (e.g. unlock phones, prevent crime, school 
attendance)

• Natural language processing (e.g. key phrase recognition, question-answer 
matching)

• Medical diagnosis (e.g. diabetic eye disease, fMRI data tumor segmentation)

• Drug discovery (e.g. predicting interaction between molecules and biological 
proteins)

Packages and Frameworks
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Tutorials

• Stanford CS231n: Convolutional Neural Networks for Visual Recognition

• Coursera Deep Learning Specialization

• CMU 11777, Lecture 3: CNN and Optimization

http://cs231n.stanford.edu/syllabus.html
https://www.coursera.org/specializations/deep-learning
https://piazza-resources.s3.amazonaws.com/iv8u4ersu9f4hj/iymcf65rfzd2ie/lecture3.1CNN_and_Optimization.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=ASIAR6AWVCBX46YXH2ZC/20181108/us-east-1/s3/aws4_request&X-Amz-Date=20181108T165126Z&X-Amz-Expires=10800&X-Amz-SignedHeaders=host&X-Amz-Security-Token=FQoGZXIvYXdzEGQaDFacvL16NOdLKo0GtyK3A3UcOXZH1JaIBS18gRletOVhADy4SF2abxReSL98JpUeCTroJotf6uZHnzko0Rx1fEVDNuqIUoXbLhbTVy3ATLkpn8JZV/ocRphgebmOKLIkzuIr9VA7S1OdnyJr%2BdgSB%2BKDXCiBEUlJ/0eP0RCr77PMV5Pr6Q/HImPg2ISZ9TNzdnnykWN%2B2W8GaETRnbMcvQImUVISRiQyXtWvxhBN0AtsgAeNiY7P814K2JfHBtX9cxzLmaiV0NoB5JuAzQrTVrCORDO1wK7P86iuFfGd7Ws0XNAgheIU%2B4UB5EturQffsLB1vWWNY6F0jZ5rsfyxOaYbaGLW6d2eLno9UTcDvsR52eCzt28YmtmaZEQ1dCkINpbKW/HqL0QJmQ8M/sM7fR1%2BkBo7sh/KaQhmE1x93%2Bk7kpIdoywFw9c3j8cmUrhkgSPecBlanzH%2B8j4FEBpv9DGYpRrxzGCICTWbRIbFnDK6MIfT9JNMuYKq9v5gzxu9qrSrtnUYLGLtoyvSwUO5LmqZcYQMAPP2EB1E8tulQWONUpVWVch4Z2HtbD830xZdGYAtn%2BtQj1kgA0Ql4xI68kCEInMiyY4ooqqQ3wU%3D&X-Amz-Signature=e970736359dfd5af9fb23289ec3f43a457bc1900386d6e4bb0d9c1d17957e7d2
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Thank You!
Q & A


