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Outline

• Continuous-time time series

• Event time series

Discrete-time time series

• Time series observed at regularly spaced intervals of time
• E.g., every day or every hour

• Formally represented by 𝑦𝑡: 𝑡 = 1,2,…

• Essentially, “time” is discrete

Time Temperature (C)

8:00 AM 5

9:00 AM 7

10:00 AM 10

… ..
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Discrete-time time series

• However, the underlying data source is always in continuous time

• We get discrete-time time series by
• Sampling regularly

• Binning

• Aggregating

Tem
p

eratu
re

Time

Continuous-time time series

• Time series observed at irregularly spaced intervals of time

• Formally represented by 𝑦 𝑡 : 𝑡 ∈ ℝ

Time Blood pressure 
(diastolic)

5/10/2018 8:33 AM 75

5/17/2018 3:10 PM 88

8/10/2018 10:00 AM 85

… ..
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Continuous-time time series

• In some domains, regularly sampling time series is NOT feasible or 
desired
• blood pressure

• white blood cell (WBC) count

• We can still discretize the time by binning

Time

W
B

C

Models for discrete-time time series

• We have a set of well-studied models for discrete-time time series

• Regression models
• AR, MA, ARIMA

• State-space models
• Linear dynamical systems

• Do we have models directly applicable to continuous-time time 
series?
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Outline

• Continuous-time time series
• Regression model

• State-space model

• Event time series

Curve fitting for continuous-time time series

• Observe data 𝑦 𝑡𝑛 𝑛=1
𝑁 at irregularly spaced time points

• Assume 𝑦 𝑡𝑛 = 𝑓 𝑡𝑛 + 𝜂𝑛, where 𝜂𝑛 is additive noise

• Our goal is to find 𝑓(𝑡) given the data

Time

W
B

C
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GP for curve fitting

• Gaussian processes (GP) provide an elegant solution to curve fitting 
(probabilistically)

• Recall that 𝐺𝑃 𝑚, 𝑘 is a stochastic process defined by
• Mean function 𝑚 𝑥

• Covariance function 𝑘(𝑥, 𝑥′)

• 𝑥, 𝑥′ are inputs of the GP

• For a set of inputs 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑁 the outputs have the 
multivariate Gaussian distribution 𝑁 𝒎 𝒙 ,𝑲 𝒙, 𝒙

GP for curve fitting

• Given observed time series 𝒚 = 𝑦 𝑡𝑛 ∈ ℝ 𝑛=1
𝑁 at 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑁)

• Assuming 𝑦 𝑡𝑛 = 𝑓 𝑡𝑛 + 𝜂𝑛
• To find 𝑓 𝑡 or 𝑦(𝑡)

• We can assume 𝑦 𝑡 ∼ 𝐺𝑃(𝑚, 𝑘) with 𝑡 being the input to the GP

• Then compute the posterior distribution 𝑝(𝑦(𝑡)|𝒚)
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GP prediction

• To make predictions 𝒚∗ = 𝒚(𝒕∗) at new time points 𝒕∗
• We invoke the standard results for GP

𝑝 𝒚∗ = 𝑁(𝒎∗, 𝑪∗)

• where
• 𝒎∗ = 𝒎 𝒕∗ +𝑲 𝒕∗, 𝒕 𝑲 𝒕, 𝒕 −1 𝒚 𝒕 −𝒎 𝒕

• 𝑪∗ = 𝑲 𝒕∗, 𝒕∗ −𝑲 𝒕∗, 𝒕 𝑲 𝒕, 𝒕 −1𝑲 𝒕∗, 𝒕
𝑇

Covariance function

• Different types of kernels can be used as the covariance function
• White noise 𝑘 𝑥, 𝑥′ = 𝜎2𝛿(𝑥 − 𝑥′)

• Squared exponential 𝑘 𝑥, 𝑥′ = ℎ2 exp −
𝑥−𝑥′

𝜆

2

• Periodic squared exponential 𝑘 𝑥, 𝑥′ = ℎ2 exp −
1

2𝑤2 sin
2 𝜋

𝑥−𝑥′

𝑇

• They can be combined together by summation and multiplication



11/2/2018

8

Mean function

• If we have clear domain knowledge, we can put it in
• E.g., if we know there is a linear trend, then 𝑚 𝑡 = 𝛽1𝑡 + 𝛽0 would be a 

good choice

• Most of the time, we are not certain about it, so we put a vague flat 
mean 𝑚 𝑡 = 𝛽0 or even 𝑚 𝑡 = 0

Multivariate time series

• So far we assumed the time series is univariate (one dimensional)

• What if the time series is multivariate (multi-dimensional)

• For example, for a patient, we simultaneously collect over time:
• blood pressures

• heart beat rates

• white blood cell counts

• Can we still use GP?
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GP for multivariate time series

• We can put a label 𝑙 = 1,2,… , 𝐷 on each dimension

• The data can be represented as 𝑦𝑛, 𝑡𝑛, 𝑙𝑛 𝑛=1
𝑁

• Or equivalently 𝑦 𝑡𝑛, 𝑙𝑛 𝑛=1
𝑁

• The second representation shows that we can just treat the label as 
another input in addition to the time

• Define 
𝑚 𝑡, 𝑙 = 𝛽𝑙 , 𝑘 𝑡, 𝑙 , 𝑡′, 𝑙′ = 𝑘𝑡 𝑡, 𝑡

′ 𝑘𝑙(𝑙, 𝑙
′)

• Then we can assume 𝑦 𝑡, 𝑙 ∼ 𝐺𝑃(𝑚, 𝑘)

Outline

• Continuous-time time series
• Regression model

• State-space model

• Event time series
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Linear dynamical system

• Recall for discrete-time time series, we can use hidden states 𝑥𝑡 to 
track the underlying dynamics of the time series
• 𝑝(𝑥𝑡 𝑥𝑡−1 = 𝑁(𝑥𝑡|𝐴𝑥𝑡−1, Γ)

• 𝑝 𝑦𝑡 𝑥𝑡 = 𝑁(𝑦𝑡|𝐶𝑥𝑡 , Σ)

• Although conditionally independent
• 𝑝 𝑦𝑡 𝑥𝑡, 𝑦1, 𝑦2… , 𝑦𝑡−1 = 𝑝(𝑦𝑡|𝑥𝑡)

• Marginally 𝑦𝑡 could depend on all the past observations 𝑦1, 𝑦2, … 𝑦𝑡−1

Linear dynamical system

𝑦1 𝑦2 𝑦3

𝑥1 𝑥2 𝑥3𝑥0
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GP dynamical system

• Assume we observe 𝒚𝑛, 𝑡𝑛 𝑛=1
𝑁 , where 𝒚𝑛 ∈ ℝ𝐷

• Let a set of GPs define the hidden states
• 𝑥𝑞 𝑡 ∼ 𝐺𝑃 0, 𝑘𝑥 𝑡, 𝑡′ , 𝑞 = 1,2,… , 𝑄

• Have emission functions take the hidden states to the observations
• 𝑦𝑛𝑑 = 𝑓𝑑 𝒙𝑛 + 𝜖𝑛𝑑 , 𝜖𝑛𝑑 ∼ 𝑁 0, 𝛽−1

• 𝒙𝑛 = 𝑥1 𝑡𝑛 , 𝑥2 𝑡𝑛 , … , 𝑥𝑄 𝑡𝑛
𝑇

• Assume each emission function is drawn from a GP

• 𝑓𝑑 𝒙 ∼ 𝐺𝑃 0, 𝑘𝑓 𝒙, 𝒙′ , 𝑑 = 1,2,… , 𝐷

GP dynamical system

𝑦1 𝑦2 𝑦3

𝑓 𝑓 𝑓

𝑥1 𝑥2 𝑥3

𝑡1 𝑡2 𝑡3
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Likelihood function

• Notations
• 𝑋 ∈ ℝ𝑁×𝑄 collect all 𝑥𝑛𝑞 = 𝑥𝑞(𝑡𝑛)
• 𝐹 ∈ ℝ𝑁×𝐷 collect all 𝑓𝑑(𝒙𝑛)
• 𝑌 ∈ ℝ𝑁×𝐷 collect all 𝑦𝑛𝑑

• Joint distribution
𝑝 𝑌, 𝐹, 𝑋 𝒕 = 𝑝 𝑌 𝐹 𝑝 𝐹 𝑋 𝑝 𝑋 𝒕

• Marginal distribution
𝑝 𝑌 𝒕 = ∫ 𝑝 𝑌 𝐹 𝑝 𝐹 𝑋 𝑝 𝑋 𝒕 𝑑𝑋𝑑𝐹

• The marginal likelihood is intractable

• Approximated by variational lower bound

Prediction

• Given a set of new time points 𝒕∗
• Let 𝐹∗ and 𝑌∗ be the values of 𝑓(⋅) and 𝑦(⋅) at those points

𝑝 𝑌∗ 𝑌 = න𝑝 𝑌∗, 𝐹∗, 𝑋∗ 𝑌 𝑑𝐹∗𝑑𝑋∗

= න𝑝 𝑌∗ 𝐹∗ 𝑝 𝐹∗ 𝑋∗, 𝑌 𝑝 𝑋∗ 𝑌 𝑑𝐹∗𝑑𝑋∗

• Using variational approximation for 𝑝 𝐹∗ 𝑋∗, 𝑌 and 𝑝 𝑋∗ 𝑌

• We can find analytically the mean and covariance of 𝑌∗
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Outline

• Continuous-time time series

• Event time series

Event time series

• Discrete events in continuous time
• Earthquakes

• Accidents

• Different from continuous-time time series

• Represented as points on a time line

Time
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Distribution of events

• A sequence of events can be represented by their times 𝒕 = 𝑡𝑛 𝑛=1
𝑁

• 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 < ∞

• Time in [0,∞)

• No coincidence

• A temporal point process is a probability distribution of points over 
the time line

• It defines the density 𝑓(𝒕) for any 𝒕

Temporal point process

• Let 𝐻𝑡 denote the history of the events at time 𝑡 including 𝑡
𝐻𝑡 = {𝑡𝑛: 𝑡𝑛 ≤ 𝑡}

• Let 𝐻𝑡− denote the history of events at time 𝑡 excluding 𝑡
𝐻𝑡− = {𝑡𝑛: 𝑡𝑛 < 𝑡}

• Let 𝑡0 = 0 and 𝐻0 = ∅

• The joint density function for the events is

𝑓 𝒕 =ෑ

𝑛=1

𝑁

𝑓 𝑡𝑛 𝐻𝑡𝑛−1

• We can define a point process by specifying 𝑓(𝑡𝑛|𝐻𝑡𝑛−1)
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Renewal process

• A renewal process is a point process with IID interevent times
𝑓 𝑡𝑛 𝐻𝑡𝑛−1 = 𝑔 𝑡𝑛 − 𝑡𝑛−1 = 𝑔(Δ𝑡𝑛)

• 𝑔 is the density function of a probability distribution on 0,∞
• E.g., 𝑔 𝑡 = 𝑒−𝑡, that is Δ𝑡𝑛 ∼ 𝐸𝑥𝑝 1

Conditional intensity function

• Let 𝑡𝑛 be the last point before 𝑡.

• We derive the cumulative distribution function

𝐹 𝑡 𝐻𝑡𝑛 = න
𝑡𝑛

𝑡

𝑓 𝑢 𝐻𝑡𝑛 𝑑𝑢

• Probability of next point in (𝑡𝑛, 𝑡]

• Then the conditional intensity function (CIF) is defined by

𝜆∗ 𝑡 =
𝑓 𝑡 𝐻𝑡𝑛

1 − 𝐹 𝑡 𝐻𝑡𝑛
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Conditional intensity function

• CIF defines the rate of events at time 𝑡
𝜆∗ 𝑡 𝑑𝑡 = 𝐸 𝑁 𝑡, 𝑡 + 𝑑𝑡 𝐻𝑡−

• 𝑁(𝐴) is the number of points in the interval A

• We can define a point process by specifying its CIF

Poisson process

• A homogeneous Poisson process is defined by
𝜆∗ 𝑡 = 𝜇

• The numbers of points in disjoint sets are independent

• The interevent times are IID and exponentially distributed

• A special case of renewal processes

• A inhomogeneous Poisson process is defined by
𝜆∗ 𝑡 = 𝜇 𝑡

• The numbers of points in disjoint sets are independent

• Not necessarily a renewal process
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Hawkes process

• A Hawkes process is defined by

𝜆∗ 𝑡 = 𝜇 + 𝛼 ෍

𝑡𝑛<𝑡

exp − 𝑡 − 𝑡𝑛

• Has a baseline rate of 𝜇
• A new point increases the rate temporarily by 𝛼, which gradually decays
• Self-exciting or clustering effects

• A Hawkes process can be generalized to

𝜆∗ 𝑡 = 𝜇 𝑡 + 𝛼 ෍

𝑡𝑛<𝑡

𝛾(𝑡 − 𝑡𝑛; 𝛽)

• 𝛾(𝑡; 𝛽) is a density on (0,∞)

Hawkes process
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Self-correcting process

• A self-correcting process is defined by

𝜆∗ 𝑡 = exp 𝜇𝑡 − ෍

𝑡𝑛<𝑡

𝛼

• Baseline intensity keeps increasing over time

• A new point decreases the rate by a ratio of exp(−𝛼)

• Point patterns tend to be regular, not clustered as in Hawkes processes

Self-correcting process
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From CIF to distribution functions

• Let 𝑡𝑛 be the last point before 𝑡. Recall

𝜆∗ 𝑡 =
𝑓 𝑡 𝐻𝑡𝑛

1 − 𝐹 𝑡 𝐻𝑡𝑛
• Then

𝐹 𝑡 𝐻𝑡𝑛 = 1 − exp −න
𝑡𝑛

𝑡

𝜆∗ 𝑢 𝑑𝑢

𝑓 𝑡 𝐻𝑡𝑛 = 𝜆∗ 𝑡 exp −න
𝑡𝑛

𝑡

𝜆∗ 𝑢 𝑑𝑢

Terminating point process

• Typically, we assume next point will eventually come
lim
𝑡→∞

𝐹 𝑡 𝐻𝑡𝑛 = 1

• But we can relax this assumption

• Allow the process to terminate with no more points after some point
lim
𝑡→∞

𝐹 𝑡 𝐻𝑡𝑛 < 1
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Terminating point process

• Define a unit-rate point process terminating after 𝑡 = 1
𝜆∗ 𝑡 = 𝕀 𝑡 ∈ 0,1

• Then
𝐹 𝑡 𝐻𝑡𝑛 = 1 − exp − min 𝑡, 1 − 𝑡𝑛

Terminating point process

• Define a unit-rate point process terminating after getting 𝑚 points
𝜆∗ 𝑡 = 𝕀 𝑁 0, 𝑡 < 𝑚

• Then
𝐹 𝑡 𝐻𝑡𝑛 = 1 − exp − 𝑡 − 𝑡𝑛 𝕀 𝑛 < 𝑚
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Marked event time series

• Sometimes, our data contain not only events 𝑡𝑛
• But also values 𝑣𝑛 associated with events

• Examples
• Earthquakes: time + magnitude

• Accidents: time + type of injury

• Call these values marks

Time

Marked point process

• Treat the values as marks 𝑣𝑛 ∈ 𝕄, where 𝕄 ⊆ ℝ or 𝕄 ⊆ ℕ

• Extend the original CIF

𝜆∗ 𝑡 =
𝑓 𝑡 𝐻𝑡𝑛

1 − 𝐹 𝑡 𝐻𝑡𝑛
• to

𝜆∗ 𝑡, 𝑣 = 𝜆∗ 𝑡 𝑓∗ 𝑣 𝑡 =
𝑓 𝑡, 𝑣 𝐻𝑡𝑛
1 − 𝐹 𝑡 𝐻𝑡𝑛

• 𝑓∗ 𝑣 𝑡 = 𝑓 𝑣 𝑡, 𝐻𝑡𝑛 is the conditional density of the mark

• 𝑓 𝑡, 𝑣 𝐻𝑡𝑛 = 𝑓 𝑡 𝐻𝑡𝑛 𝑓∗(𝑣|𝑡) is the joint density of time and mark
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Marked point process

• If the marks are discrete
𝜆∗ 𝑡, 𝑣 𝑑𝑡 = 𝐸[𝑁(𝑑𝑡 × 𝑣)|𝐻𝑡]

• 𝑁(𝑑𝑡 × 𝑣) is the number of events in the small time interval 𝑑𝑡 with 
the mark 𝑣

• If the marks are continuous
𝜆∗ 𝑡, 𝑣 𝑑𝑡𝑑𝑣 = 𝐸 𝑁 𝑑𝑡 × 𝑑𝑣 𝐻𝑡

• 𝑁(𝑑𝑡 × 𝑑𝑣) is the number of events in the small time interval 𝑑𝑡 with 
marks in the small interval 𝑑𝑣

Marked Hawkes process

• For modeling earthquakes with times and magnitudes

• Assume the magnitudes are in [0,∞)

• Define a marked Hawkes process

𝜆∗ 𝑡, 𝑣 = 𝜇 + 𝛼 ෍

𝑡𝑛<𝑡

𝑒𝛽𝑣𝑛𝑒−𝛾 𝑡−𝑡𝑛 𝛿𝑒−𝛿𝑣

• New points increase the intensity by 𝛼𝑒𝛽𝑣𝑛

• Large earthquakes increase intensity more than small ones
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Likelihood function

• Given events 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑁) observed in a time interval 0, 𝑇

𝑝 𝒕 = ෑ

𝑛=1

𝑁

𝑓 𝑡𝑛 𝐻𝑡𝑛−1 1 − 𝐹 𝑇 𝐻𝑡𝑁

= ෑ

𝑛=1

𝑁

𝜆∗ 𝑡𝑛 exp −න
0

𝑇

𝜆∗ 𝑢 𝑑𝑢

Likelihood function

• Given events 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑁) observed in a time interval 0, 𝑇

• If we have marks 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑁) associated with 𝒕

𝑝 𝒕, 𝒗 = ෑ

𝑛=1

𝑁

𝑓 𝑡𝑛, 𝑣𝑛 𝐻𝑡𝑛−1 1 − 𝐹 𝑇 𝐻𝑡𝑁

= ෑ

𝑛=1

𝑁

𝜆∗ 𝑡𝑛, 𝑣𝑛 exp −න
0

𝑇

𝜆∗ 𝑢 𝑑𝑢
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Maximum likelihood estimate (MLE)

• For a homogeneous Poisson process 𝜆∗ 𝑡 = 𝜇

• MLE can be found analytically

ො𝜇 =
𝑁

𝑇
• In general, we can use numerical methods to find MLE

Time-rescaling theorem

• Let 0 < 𝑡1 < 𝑡2 < ⋯ be a point process with an integrable CIF 𝜆∗ 𝑡

• Define Λ∗ 𝑡 = ∫0
𝑡
𝜆∗ 𝑢 𝑑𝑢

• Then Λ∗ 𝑡1 , Λ∗ 𝑡2 , … form a unit-rate Poisson process
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Model checking

• Given data 𝑡𝑛 𝑛=1
𝑁

• To check whether a point process with a CIF 𝜆∗(𝑡) fits the data

• We check whether Λ∗ 𝑡𝑛 − Λ∗(𝑡𝑛−1) 𝑛=1
𝑁 can be fit by 𝐸𝑥𝑝(1)

Sampling from a point process

• Inverse method

• Ogata’s modified thinning algorithm
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Inverse method

• Define Λ∗ 𝑡 = ∫0
𝑡
𝜆∗ 𝑢 𝑑𝑢

• Set 𝑛 = 1, 𝑠0 = 0

• Repeat
• Sample 𝑢𝑛 ∼ 𝐸𝑥𝑝 1

• Set 𝑠𝑛 = 𝑠𝑛−1 + 𝑢𝑛
• Calculate 𝑡𝑛 = Λ∗−1 𝑠𝑛
• Set 𝑛 = 𝑛 + 1

Ogata’s modified thinning algorithm

• Define 𝑚 𝑡 ≥ sup
𝑡<𝑢<∞

𝜆∗ 𝑢

• Set 𝑛 = 0, 𝑡 = 0

• Repeat
• Sample 𝑠 ∼ 𝐸𝑥𝑝 𝑚 𝑡 , 𝑢 ∼ 𝑈𝑛𝑖𝑓 0,1

• If 𝑢 ≤
𝜆∗ 𝑡+𝑠

𝑚 𝑡
, set 𝑛 = 𝑛 + 1, 𝑡𝑛 = 𝑡 + 𝑠

• Set 𝑡 = 𝑡 + 𝑠
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Example: thinning

Thank you
Q & A



11/2/2018

28

References

• Rasmussen and Williams, Gaussian Processes for Machine Learning.

• Roberts et al., “Gaussian Processes for Time-Series Modelling.”

• Damianou, Titsias, and Lawrence, “Variational Gaussian Process 
Dynamical Systems.”

• Rasmussen, “Temporal Point Processes the Conditional Intensity 
Function.”


