Continuous-Time Models

Siqi Liu CS3750 Advanced Machine Learning

Outline

- Continuous-time time series
- Event time series

Outline

- Continuous-time time series
- Event time series

Discrete-time time series

- Time series observed at regularly spaced intervals of time
 - E.g., every day or every hour
- Formally represented by $\{y_t: t = 1, 2, ...\}$
- Essentially, "time" is discrete

Time	Temperature (C)
8:00 AM	5
9:00 AM	7
10:00 AM	10

Continuous-time time series

- Time series observed at irregularly spaced intervals of time
- Formally represented by $\{y(t): t \in \mathbb{R}\}$

Time	Blood pressure (diastolic)
5/10/2018 8:33 AM	75
5/17/2018 3:10 PM	88
8/10/2018 10:00 AM	85

Models for discrete-time time series

- We have a set of well-studied models for discrete-time time series
- Regression models
 - AR, MA, ARIMA
- State-space models
 - Linear dynamical systems
- Do we have models **directly applicable** to continuous-time time series?

Outline

• Continuous-time time series

- Regression model
- State-space model
- Event time series

Curve fitting for continuous-time time series

- Observe data $\{y(t_n)\}_{n=1}^N$ at irregularly spaced time points
- Assume $y(t_n) = f(t_n) + \eta_n$, where η_n is additive noise
- Our goal is to find f(t) given the data

GP for curve fitting

- Gaussian processes (GP) provide an elegant solution to curve fitting (probabilistically)
- Recall that GP(m, k) is a stochastic process defined by
 - Mean function m(x)
 - Covariance function k(x, x')
 - x, x' are inputs of the GP
- For a set of inputs $x = \{x_1, x_2, ..., x_N\}$ the outputs have the multivariate Gaussian distribution N(m(x), K(x, x))

GP for curve fitting

- Given observed time series $y = \{y(t_n) \in \mathbb{R}\}_{n=1}^N$ at $t = (t_1, t_2, ..., t_N)$
- Assuming $y(t_n) = f(t_n) + \eta_n$
- To find f(t) or y(t)
- We can assume $y(t) \sim GP(m, k)$ with t being the input to the GP
- Then compute the posterior distribution $p(y(t)|\mathbf{y})$

GP prediction

- To make predictions $m{y}_* = m{y}(m{t}_*)$ at new time points $m{t}_*$
- We invoke the standard results for GP

$$p(\boldsymbol{y}_*) = N(\boldsymbol{m}_*, \boldsymbol{C}_*)$$

- where
 - $m_* = m(t_*) + K(t_*,t)K(t,t)^{-1}(y(t) m(t))$
 - $C_* = K(t_*, t_*) K(t_*, t)K(t, t)^{-1}K(t_*, t)^T$

Covariance function

- Different types of kernels can be used as the covariance function
 - White noise $k(x, x') = \sigma^2 \delta(x x')$
 - Squared exponential $k(x, x') = h^2 \exp\left[-\left(\frac{x-x'}{\lambda}\right)^2\right]$
 - Periodic squared exponential $k(x, x') = h^2 \exp \left[-\frac{1}{2w^2} \sin^2 \left(\pi \left|\frac{x-x'}{T}\right|\right)\right]$
- They can be combined together by summation and multiplication

Mean function

- If we have clear domain knowledge, we can put it in
 - E.g., if we know there is a linear trend, then $m(t) = \beta_1 t + \beta_0$ would be a good choice
- Most of the time, we are not certain about it, so we put a vague flat mean $m(t) = \beta_0$ or even m(t) = 0

Multivariate time series

- So far we assumed the time series is univariate (one dimensional)
- What if the time series is multivariate (multi-dimensional)
- For example, for a patient, we simultaneously collect over time:
 - blood pressures
 - heart beat rates
 - white blood cell counts
- Can we still use GP?

GP for multivariate time series

- We can put a label l = 1, 2, ..., D on each dimension
- The data can be represented as $\{(y_n, t_n, l_n)\}_{n=1}^N$
- Or equivalently $\{y(t_n, l_n)\}_{n=1}^N$
- The second representation shows that we can just treat the label as another input in addition to the time
- Define

$$m(t, l) = \beta_l, \qquad k((t, l), (t', l')) = k_t(t, t')k_l(l, l')$$

• Then we can assume $y(t, l) \sim GP(m, k)$

Outline

- Continuous-time time series
 - Regression model
 - State-space model
- Event time series

Linear dynamical system

- Recall for discrete-time time series, we can use hidden states x_t to track the underlying dynamics of the time series
 - $p(x_t|x_{t-1}) = N(x_t|Ax_{t-1}, \Gamma)$
 - $p(y_t|x_t) = N(y_t|Cx_t, \Sigma)$
- Although conditionally independent
 - $p(y_t|x_t, y_1, y_2 \dots, y_{t-1}) = p(y_t|x_t)$
- Marginally y_t could depend on all the past observations $y_1, y_2, \dots y_{t-1}$

GP dynamical system

- Assume we observe $\{(\boldsymbol{y}_n, t_n)\}_{n=1}^N$, where $\boldsymbol{y}_n \in \mathbb{R}^D$
- Let a set of GPs define the hidden states
 - $x_q(t) \sim GP(0, k_x(t, t')), q = 1, 2, \dots, Q$
- Have emission functions take the hidden states to the observations
 - $y_{nd} = f_d(\mathbf{x}_n) + \epsilon_{nd}, \ \epsilon_{nd} \sim N(0, \beta^{-1})$
 - $\boldsymbol{x}_n = [x_1(t_n), x_2(t_n), ..., x_Q(t_n)]^T$
- Assume each emission function is drawn from a GP
 - $f_d(x) \sim GP(0, k_f(x, x')), d = 1, 2, ..., D$

Prediction

- Given a set of new time points $m{t}_*$
- Let F_* and Y_* be the values of $f(\cdot)$ and $y(\cdot)$ at those points $p(Y_*|Y) = \int p(Y_*, F_*, X_*|Y) dF_* dX_*$ $= \int p(Y_*|F_*) p(F_*|X_*, Y) p(X_*|Y) dF_* dX_*$
- Using variational approximation for $p(F_*|X_*, Y)$ and $p(X_*|Y)$
- We can find analytically the mean and covariance of Y_*

Outline

- Continuous-time time series
- Event time series

Event time series

- Discrete events in continuous time
 - Earthquakes
 - Accidents
- Different from continuous-time time series
- Represented as points on a time line

Distribution of events

- A sequence of events can be represented by their times $\boldsymbol{t} = \{t_n\}_{n=1}^N$
 - $0 < t_1 < t_2 < \dots < t_N < \infty$
 - Time in $[0, \infty)$
 - No coincidence
- A temporal point process is a probability distribution of points over the time line
- It defines the density f(t) for any t

Temporal point process

- Let H_t denote the history of the events at time t including t $H_t = \{t_n : t_n \le t\}$
- Let H_{t-} denote the history of events at time t excluding t $H_{t-} = \{t_n : t_n < t\}$

• Let
$$t_0 = 0$$
 and $H_0 = \emptyset$

• The joint density function for the events is

$$f(\mathbf{t}) = \prod_{n=1}^{n} f(t_n | H_{t_{n-1}})$$

• We can define a point process by specifying $f(t_n|H_{t_{n-1}})$

Renewal process

- A renewal process is a point process with IID interevent times $f(t_n | H_{t_{n-1}}) = g(t_n t_{n-1}) = g(\Delta t_n)$
- g is the density function of a probability distribution on $(0,\infty)$
 - E.g., $g(t) = e^{-t}$, that is $\Delta t_n \sim Exp(1)$

Conditional intensity function

- Let t_n be the last point before t.
- We derive the cumulative distribution function

$$F(t|H_{t_n}) = \int_{t_n}^{t} f(u|H_{t_n}) du$$

- Probability of next point in $(t_n, t]$
- Then the conditional intensity function (CIF) is defined by

$$\lambda^*(t) = \frac{f(t|H_{t_n})}{1 - F(t|H_{t_n})}$$

Conditional intensity function

- CIF defines the rate of events at time t $\lambda^*(t)dt = E[N([t, t + dt])|H_{t-}]$
- N(A) is the number of points in the interval A
- We can define a point process by specifying its CIF

Poisson process

• A homogeneous Poisson process is defined by

$$\lambda^*(t) = \mu$$

- The numbers of points in disjoint sets are independent
- The interevent times are IID and exponentially distributed
- A special case of renewal processes
- A inhomogeneous Poisson process is defined by

$$\lambda^*(t) = \mu(t)$$

- The numbers of points in disjoint sets are independent
- Not necessarily a renewal process

Hawkes process

• A Hawkes process is defined by

$$\lambda^*(t) = \mu + \alpha \sum_{t_n < t} \exp(-(t - t_n))$$

- Has a baseline rate of μ
- A new point increases the rate temporarily by α , which gradually decays
- Self-exciting or clustering effects
- A Hawkes process can be generalized to

$$\lambda^*(t) = \mu(t) + \alpha \sum_{t_n < t} \gamma(t - t_n; \beta)$$

• $\gamma(t;\beta)$ is a density on $(0,\infty)$

Self-correcting process

• A self-correcting process is defined by

$$\lambda^*(t) = \exp\left(\mu t - \sum_{t_n < t} \alpha\right)$$

- Baseline intensity keeps increasing over time
- A new point decreases the rate by a ratio of $\exp(-\alpha)$
- Point patterns tend to be regular, not clustered as in Hawkes processes

Self-correcting process

From CIF to distribution functions

• Let t_n be the last point before t. Recall

$$\lambda^*(t) = \frac{f(t|H_{t_n})}{1 - F(t|H_{t_n})}$$

• Then

$$F(t|H_{t_n}) = 1 - \exp\left(-\int_{t_n}^t \lambda^*(u) du\right)$$

$$f(t|H_{t_n}) = \lambda^*(t) \exp\left(-\int_{t_n}^t \lambda^*(u) du\right)$$

Terminating point process

• Typically, we assume next point will eventually come

$$\lim_{t\to\infty}F(t|H_{t_n})=1$$

- But we can relax this assumption
- Allow the process to terminate with no more points after some point $\lim_{t\to\infty}F\bigl(t\big|H_{t_n}\bigr)<1$

Terminating point process

- Define a unit-rate point process terminating after t = 1 $\lambda^*(t) = \mathbb{I}(t \in [0,1])$
- Then

$$F(t|H_{t_n}) = 1 - \exp(-(\min\{t, 1\} - t_n))$$

Terminating point process

- Define a unit-rate point process terminating after getting m points $\lambda^*(t) = \mathbb{I}(N([0,t)) < m)$
- Then

$$F(t|H_{t_n}) = (1 - \exp(-(t - t_n)))\mathbb{I}(n < m)$$

Marked point process

- Treat the values as marks $v_n \in \mathbb{M}$, where $\mathbb{M} \subseteq \mathbb{R}$ or $\mathbb{M} \subseteq \mathbb{N}$
- Extend the original CIF

$$\lambda^*(t) = \frac{f(t|H_{t_n})}{1 - F(t|H_{t_n})}$$

• to

$$\lambda^*(t,v) = \lambda^*(t)f^*(v|t) = \frac{f(t,v|H_{t_n})}{1 - F(t|H_{t_n})}$$

• $f^*(v|t) = f(v|t, H_{t_n})$ is the conditional density of the mark

• $f(t, v | H_{t_n}) = f(t | H_{t_n}) f^*(v | t)$ is the joint density of time and mark

Marked point process

• If the marks are discrete

 $\lambda^*(t,v)dt = E[N(dt \times v)|H_t]$

- $N(dt \times v)$ is the number of events in the small time interval dt with the mark v
- If the marks are continuous

 $\lambda^*(t,v)dtdv = E[N(dt \times dv)|H_t]$

• $N(dt \times dv)$ is the number of events in the small time interval dt with marks in the small interval dv

Marked Hawkes process

- For modeling earthquakes with times and magnitudes
- Assume the magnitudes are in $[0, \infty)$
- Define a marked Hawkes process

$$\lambda^*(t,v) = \left(\mu + \alpha \sum_{t_n < t} e^{\beta v_n} e^{-\gamma(t-t_n)}\right) \delta e^{-\delta v}$$

• New points increase the intensity by $\alpha e^{\beta v_n}$

• Large earthquakes increase intensity more than small ones

Likelihood function

• Given events $\mathbf{t} = (t_1, t_2, ..., t_N)$ observed in a time interval [0, T)

$$p(\mathbf{t}) = \left(\prod_{n=1}^{N} f(t_n | H_{t_{n-1}})\right) \left(1 - F(T | H_{t_N})\right)$$
$$= \left(\prod_{n=1}^{N} \lambda^*(t_n)\right) \exp\left(-\int_0^T \lambda^*(u) \, du\right)$$

Likelihood function

- Given events $\boldsymbol{t} = (t_1, t_2, ..., t_N)$ observed in a time interval [0, T)
- If we have marks $\boldsymbol{v} = (v_1, v_2, ..., v_N)$ associated with \boldsymbol{t}

$$p(\mathbf{t}, \mathbf{v}) = \left(\prod_{n=1}^{N} f(t_n, v_n | H_{t_{n-1}})\right) \left(1 - F(T | H_{t_N})\right)$$
$$= \left(\prod_{n=1}^{N} \lambda^*(t_n, v_n)\right) \exp\left(-\int_0^T \lambda^*(u) \, du\right)$$

Maximum likelihood estimate (MLE)

- For a homogeneous Poisson process $\lambda^*(t) = \mu$
- MLE can be found analytically

$$\hat{\mu} = \frac{N}{T}$$

• In general, we can use numerical methods to find MLE

Time-rescaling theorem

- Let $0 < t_1 < t_2 < \cdots$ be a point process with an integrable CIF $\lambda^*(t)$
- Define $\Lambda^*(t) = \int_0^t \lambda^*(u) du$
- Then $\Lambda^*(t_1), \Lambda^*(t_2), ...$ form a unit-rate Poisson process

Model checking

- Given data $\{t_n\}_{n=1}^N$
- To check whether a point process with a CIF $\lambda^*(t)$ fits the data
- We check whether $\{\Lambda^*(t_n) \Lambda^*(t_{n-1})\}_{n=1}^N$ can be fit by Exp(1)

Sampling from a point process

- Inverse method
- Ogata's modified thinning algorithm

Inverse method

- Define $\Lambda^*(t) = \int_0^t \lambda^*(u) du$
- Set $n = 1, s_0 = 0$
- Repeat
 - Sample $u_n \sim Exp(1)$
 - Set $s_n = s_{n-1} + u_n$
 - Calculate $t_n = \Lambda^{*-1}(s_n)$
 - Set n = n + 1

Ogata's modified thinning algorithm

- Define $m(t) \ge \sup_{t < u < \infty} \lambda^*(u)$
- Set n = 0, t = 0
- Repeat
 - Sample $s \sim Exp(m(t)), u \sim Unif([0,1])$
 - If $u \leq \frac{\lambda^*(t+s)}{m(t)}$, set n = n+1, $t_n = t+s$

• Set
$$t = t + s$$

References

- Rasmussen and Williams, Gaussian Processes for Machine Learning.
- Roberts et al., "Gaussian Processes for Time-Series Modelling."
- Damianou, Titsias, and Lawrence, "Variational Gaussian Process Dynamical Systems."
- Rasmussen, "Temporal Point Processes the Conditional Intensity Function."