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Outline

* Continuous-time time series

Discrete-time time series

* Time series observed at regularly spaced intervals of time
* E.g., every day or every hour

* Formally represented by {y;:t = 1,2, ...}
* Essentially, “time” is discrete

8:00 AM 5
9:00 AM 7
10:00 AM 10
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Discrete-time time series

* However, the underlying data source is always in continuous time

* We get discrete-time time series by
* Sampling regularly
* Binning
* Aggregating
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Continuous-time time series

* Time series observed at irregularly spaced intervals of time
* Formally represented by {y(t):t € R}

Time Blood pressure
(diastolic)
5/10/2018 8:33 AM 75

5/17/2018 3:10 PM 88
8/10/2018 10:00 AM 85
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Continuous-time time series

* In some domains, regularly sampling time series is NOT feasible or
desired

* blood pressure
* white blood cell (WBC) count

* We can still discretize the time by binning
|
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Models for discrete-time time series

* We have a set of well-studied models for discrete-time time series
* Regression models
* AR, MA, ARIMA

* State-space models
* Linear dynamical systems

* Do we have models directly applicable to continuous-time time
series?
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Outline

* Continuous-time time series
* Regression model

Curve fitting for continuous-time time series

* Observe data {y(t,)}\_, atirregularly spaced time points
* Assume y(t,,) = f(t,) + n,, where n,, is additive noise
* Our goal is to find f(t) given the data
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GP for curve fitting

* Gaussian processes (GP) provide an elegant solution to curve fitting
(probabilistically)

* Recall that GP(m, k) is a stochastic process defined by
* Mean function m(x)
* Covariance function k(x, x")
* x,x' are inputs of the GP
* For a set of inputs x = {xq, x5, ..., Xy} the outputs have the
multivariate Gaussian distribution N(m(x), K(x, x))

GP for curve fitting

* Given observed time series y = {y(t,,) € R}_, att = (t;,t, ..., ty)
* Assuming y(t,) = f(t) + 1y

* To find f(t) or y(t)

» We can assume y(t) ~ GP(m, k) with t being the input to the GP

* Then compute the posterior distribution p(y(t)|y)
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GP prediction

* To make predictions y, = y(t,) at new time points ¢,

* We invoke the standard results for GP
p(y.) =N(m,,C.)
* where
e m, =m(t,) + K., K& )" (y(@) —m(D))
- C,=K(t,t,)— K(t,t)K(t, t) K(t,, )T

Covariance function

* Different types of kernels can be used as the covariance function

 White noise k(x,x") = 626(x — x")
2

* Squared exponential k(x,x') = h? exp l— (x;x )

* Periodic squared exponential k(x,x") = h? exp [—#sin2 (77 |x_Tx |)]

* They can be combined together by summation and multiplication




11/2/2018

Mean function

* If we have clear domain knowledge, we can put it in
* E.g., if we know there is a linear trend, then m(t) = St + S, would be a
good choice
* Most of the time, we are not certain about it, so we put a vague flat

mean m(t) = B, oreven m(t) =0

Multivariate time series

* So far we assumed the time series is univariate (one dimensional)
* What if the time series is multivariate (multi-dimensional)

* For example, for a patient, we simultaneously collect over time:

* blood pressures
* heart beat rates
* white blood cell counts

* Can we still use GP?
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GP for multivariate time series

* We can put alabel [ = 1,2, ..., D on each dimension
* The data can be represented as {(y,,, t,,, 1) }5_1

* Or equivalently {y(t,, [,)}N_;

* The second representation shows that we can just treat the label as
another input in addition to the time

* Define
m(t, 1) = B, k(& D, (1)) = ke(t, k(L 1)
* Then we can assume y(t,l) ~ GP(m, k)

Outline

* Continuous-time time series

* State-space model
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Linear dynamical system

* Recall for discrete-time time series, we can use hidden states x; to
track the underlying dynamics of the time series

* p(x¢lxe—1) = N(x¢|Axe_q,T)
* pelxe) = N(ye|Cx, 2)
* Although conditionally independent
* POelxe v, ¥z s Ye-1) = P(VelXe)
* Marginally y; could depend on all the past observations y;, v,, ... V¢_1

Linear dynamical system

10
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GP dynamical system

« Assume we observe {(y,,, t,)}_1, where y,, € RP

* Let a set of GPs define the hidden states
« x4(t) ~ GP(0,kx(t,t), ¢ =1,2,...,Q
* Have emission functions take the hidden states to the observations
* Yna = fa(Xy) + €nq, €ng ~ N(0,71)
* X = 1160, 22 (), o X (E)]
* Assume each emission function is drawn from a GP
* fa() ~ GP (0, ky(x,x)), d = 1,2,...,D

GP dynamical system

11
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Likelihood function

* Notations
« X € RN*? collect all x,,q = x4(t,)
« F € RMN*D collect all f;(xy,)
* Y € R¥*D collect all y,4

* Joint distribution
p(Y,F,X|t) = p(Y|F)p(F|X)p(X|t)
* Marginal distribution
p(Y|t) = [ p(YIF)p(FIX)p(X|t)dXdF
* The marginal likelihood is intractable
* Approximated by variational lower bound

Prediction

* Given a set of new time points £,
* Let F, and Y, be the values of () and y(-) at those points
pLIY) = [ p(L E X.IV)dRAX.

- j DI )p(E|X., Vp (XY )dF.dX,

* Using variational approximation for p(F,|X,,Y) and p(X,|Y)
* We can find analytically the mean and covariance of Y,

12
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Outline

* Event time series

Event time series

* Discrete events in continuous time
* Earthquakes
¢ Accidents

* Different from continuous-time time series
* Represented as points on a time line

B

Time
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Distribution of events

« A sequence of events can be represented by their times t = {t, }]_,
c0<t; <t < <ty<
* Timein [0, o)
* No coincidence

* A temporal point process is a probability distribution of points over
the time line

* It defines the density f(t) forany t

Temporal point process

* Let H; denote the history of the events at time t including t
Ht == {tn: tn S t}

* Let H;_ denote the history of events at time t excluding t
He_ ={t,:t, <t}

sletty=0and Hy =0

* The joint density function for tl'}ve events is

f© =] |l )
n=1

* We can define a point process by specifying f (t,|H;,_,)

14
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Renewal process

* A renewal process is a point process with IID interevent times
f(tantn_l) = g(t, — ty—1) = g(Aty)
* g is the density function of a probability distribution on (0, )
* E.g.,g(t) = e, thatis At,, ~ Exp(1)

Conditional intensity function

* Let t,, be the last point before t.
* We derive the cumulative distribution function

F(elte) = | £Culte,)au

* Probability of next point in (¢, t]
* Then the conditional intensity function (CIF) is defined by
. f(¢|He,)
A (t) =
1-F(¢|H,)

15
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Conditional intensity function

* CIF defines the rate of events at time t
A*(t)dt = E[N([t,t + dt])|H,_]

* N(A) is the number of points in the interval A
* We can define a point process by specifying its CIF

Poisson process

* A homogeneous Poisson process is defined by
() =pn
* The numbers of points in disjoint sets are independent
* The interevent times are |ID and exponentially distributed
* A special case of renewal processes

* A inhomogeneous Poisson process is defined by
A*(t) = u(o)
* The numbers of points in disjoint sets are independent
* Not necessarily a renewal process

16
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Hawkes process

* A Hawkes process is defined by

M) =u+a Z exp(—(t — tn))
tn<t
* Has a baseline rate of u
* A new point increases the rate temporarily by a, which gradually decays
* Self-exciting or clustering effects

* A Hawkes process can be generalized to

PO =uO+a ) Y=t )

th<t
* ¥(¢t; B) is a density on (0, o)
Hawkes process
C
Time

17
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Self-correcting process

* A self-correcting process is defined by

A*(t) = exp <,ut — 2 0()

tn<t
* Baseline intensity keeps increasing over time
* A new point decreases the rate by a ratio of exp(—a)
* Point patterns tend to be regular, not clustered as in Hawkes processes

Self-correcting process

Time

18
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From CIF to distribution functions

* Let t,, be the last point before t. Recall
o S(elH,)
A (t) =
1 - F(t|H,)

* Then .
F(t|H., ) =1—exp <— A*(u)du)

tn

f(t|He,) = 2*(®) exp (— f B (u)du)
t

n

Terminating point process

* Typically, we assume next point will eventually come
limF(t|H, ) =1

t—>oo

* But we can relax this assumption

* Allow the process to terminate with no more points after some point
lim F(t|H,, ) <1

t—oo

19
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Terminating point process

* Define a unit-rate point process terminating aftert = 1
A*(t) =1(t € [0,1])

* Then
F(t|th) =1- exp(—(min{t, 1} — tn))

Terminating point process

* Define a unit-rate point process terminating after getting m points
() =1(N([0,8)) <m)
* Then
F(t|H.,) = (1 — exp(—(t — t)))I(n < m)

20
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Marked event time series

* Sometimes, our data contain not only events t,,
* But also values v,, associated with events

* Examples
* Earthquakes: time + magnitude
* Accidents: time + type of injury

* Call these values marks

R

Time

Marked point process

* Treat the values as marks v,, € M, where M € RorM € N
* Extend the original CIF
f(t|He,)

PO =R
f(t'letn)
1-F(¢t|H,,)

s fr(v|t) = f(v|t, th) is the conditional density of the mark
. f(t, v|th) = f(t|th)f*(v|t) is the joint density of time and mark

* to

At v) = 2O f (v[t) =

21
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Marked point process

* If the marks are discrete
A*(t,v)dt = E[N(dt X v)|H;]

* N(dt X v) is the number of events in the small time interval dt with
the mark v

* If the marks are continuous
A*(t,v)dtdv = E[N(dt X dv)|H,]

* N(dt X dv) is the number of events in the small time interval dt with
marks in the small interval dv

Marked Hawkes process

* For modeling earthquakes with times and magnitudes
* Assume the magnitudes are in [0, )
* Define a marked Hawkes process
Atv)=|u+a z eﬁ”"e‘y(t‘t")> Se~%
th<t

« New points increase the intensity by aef?n
* Large earthquakes increase intensity more than small ones

22
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Likelihood function

* Given events t = (t;, ty, ..., ty) observed in a time interval [0, T)

p(t) = <ﬁ f(tn|th_1)> (1 - F(T|Ht1v))
= <ﬁ A*(tn)> exp <— LTA* (u) du>

Likelihood function

* Given events t = (ty, t, ..., ty) observed in a time interval [0, T)
* If we have marks v = (v4, v,, ..., Vy) associated with ¢

n=1

N T
= < A (t,, vn)> exp (— J A*(u) du)
n=1 0

N
p(t,v) = < Af(tn' Un|th_1)> (1 B F(T|HtN))

23
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Maximum likelihood estimate (MLE)

* For a homogeneous Poisson process 1*(t) = u
* MLE can be found analytically

#=7

* In general, we can use numerical methods to find MLE

Time-rescaling theorem

*Let0 <t; <t, <--bea point process with an integrable CIF A*(t)
* Define A*(t) = [, A*(w)du

* Then A*(t;), A*(t,), ... form a unit-rate Poisson process

24
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Model checking

* Given data {t,}}_;
* To check whether a point process with a CIF A*(t) fits the data

* We check whether {A*(t,,) — A*(t,_1)}_; can be fit by Exp(1)

Sampling from a point process

* Inverse method
* Ogata’s modified thinning algorithm

25
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Inverse method

. . t s

* Define A*(t) = fo A (w)du
*Setn=1,5q =0
* Repeat

* Sample u, ~ Exp(1)

* Sets, =sp—1 tu,

* Calculate t,, = A*"1(s,)

*Setn=n+1

Ogata’s modified thinning algorithm

* Definem(t) = sup A*(u)
t<u<oo

*Setn=0,t=0
* Repeat
* Sample s ~ Exp(m(t)),u ~ Unif ([0,1])

A*(t+s)
Ifu< o

e Sett=t+s

setn=n+1,t,=t+s

26
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Example: thinning

— Alt)
mit)

O sample

X thinned

Thank you

Q&A

27



11/2/2018

References

* Rasmussen and Williams, Gaussian Processes for Machine Learning.

* Roberts et al., “Gaussian Processes for Time-Series Modelling.”

* Damianou, Titsias, and Lawrence, “Variational Gaussian Process
Dynamical Systems.”

* Rasmussen, “Temporal Point Processes the Conditional Intensity
Function.”

28



